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A Meshfree Solver for the MEG Forward Problem
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Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires
an accurate and fast forward solver. To this aim, we propose the Method of Fundamental Solution (MFS) as a meshfree alternative
to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular
Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary
approximation of Maxwell’s equations. The magnetic field is then computed by Biot-Savart law. Numerical experiments have been
carried out in a realistic head geometry. Comparisons with a state-of-the-art BEM solver shows the attractiveness of the proposed
method.

Index Terms—MEG, method of fundamental solutions, method of particular solutions, meshfree methods.

I. INTRODUCTION

THE PROBLEM of estimating the sources of neuronal
activity in the human brain from electroencephalography

(EEG) and magnetoencephalography (MEG) signals is of great
interest both in clinical and basic health research. The brain
activity generates small electric potential and magnetic field
distributions that can be measured by means of an array of
electrodes on the scalp, for EEG, or superconducting quantum
interference devices (SQUID), for MEG, located near the head.

EEG can detect activity both in the sulci and at the top of
the cortical gyri, whereas MEG is most sensitive to activity
originating in sulci and provides a better spatial resolution [1].

Starting from a set of measured data (electric potential or
magnetic fields), an inverse problem must be solved to estimate
the corresponding neuronal activity sources. To this end, an
accurate forward solver must be designed as a component in
the solution of this inverse problem. Such a numerical tool
computes the scalp potential and/or magnetic fields generated
by a set of current sources representing the neural activity,
given knowledge of both the physical properties of the bio-
logical tissues and the geometry of the head [2].

Here we focus the attention on the solution of the MEG
forward problem. So far, the M/EEG forward problem has
been addressed by traditional mesh-based numerical meth-
ods, whose literature is vast [2]. Among these methods, the
Boundary Element Method (BEM) [3]–[5] has become the
method of choice because of its efficiency with respect to the
Finite Elements Method (FEM) [6]–[8], and it is currently
implemented in widely used software packages for M/EEG
source analysis [9], [10]. However, the BEM involves costly
numerical integration, requires an often nontrivial meshing of
the domain boundaries at high quality and could potentially
introduce mesh-related artifacts in the reconstructed neural
activation pattern.
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II. MEG FORWARD PROBLEM FORMULATION

Common models rely upon a piecewise-constant conductiv-
ity approximation so that the head is described as a volume
conductor composed of electrically homogeneous compart-
ments: typically the brain, skull and scalp. One common
difficulty with this model is that electric potentials at the
scalp are strongly distorted due to the conductivity difference
between the tissues composing the head. In contrast, mag-
netic fields depend on the electrical currents flowing in the
high conductivity tissues, i.e., in the brain, with a negligible
contribution given by the weak currents flowing in the skull
and the scalp. Therefore, while a detailed geometrical model
with at least three compartments (brain, skull, scalp) is needed
in solving the EEG forward problem, a simple homogeneous
model of the high-conductivity brain compartment is sufficient
to solve the MEG forward problem [3], [11].

Let Ω be the homogeneous domain that represents the brain,
with boundary ∂Ω and electrical conductivity σ. The volume
surrounding Ω can be considered as the ambient air, with
negligible electrical conductivity.

It is convenient to express the current density field at a point
p ∈ Ω as the sum of the source (impressed) current density
Js(p) and the volume current density, i.e.,

J(p) = Js(p)− σ∇φ(p), (1)

where φ is the electric scalar potential. We shall concentrate
our attention on the simplest case of a single neural source,
representable by a current dipole of moment Q located at p′ ∈
Ω [1]. What follows can be extended to the case of many
dipoles by simple application of the superposition principle.

With this position, the source current density is given by

Js(p) = Qδ(p− p′), (2)

where δ(p − p′) is the Dirac delta function centered at the
source point p′.

The solution of the MEG forward problem involves the
solution of a potential problem on the boundary ∂Ω. In fact,
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in the quasi-stationary approximation of the the Maxwell’s
equations [1], [12], the following equation holds:

∇2B(p) = −µ∇× J(p), (3)

where µ is the magnetic permeability of the medium, supposed
to be equal to that of the air, and the current density on the
right-hand side is given by Equation (1) if the electric scalar
potential at p is known. The solution of Equation (3) under
the assumption of a null magnetic field at an infinite distance
from the sources, is given by the Biot-Savart law [13]:

B(p) =
µ

4π

∫
Ω

J(p∗)× p− p∗

‖p− p∗‖3
dv(p∗). (4)

where dv is the differential volume element for Ω.
By using Equation (1), the integral above can be split into

two parts. One, Bs(p), relates to the contribution of the source
current density, and the other describes the contribution of
volume current density,

B(p) = Bs(p) +
µ

4π
σ

∫
Ω

∇φ(p∗)× p− p∗

‖p− p∗‖3
dv(p∗). (5)

For a dipole source, the following analytic expression of the
first term Bs(p) is known [13]:

Bs(p) =
µ

4π
Q× p− p′

‖p− p′‖3
. (6)

The volume integral over Ω in Equation (5) can be trans-
formed into a surface integral over the interfaces by applying
a corollary of the Divergence Theorem [1] that yields:

B(p) = Bs(p)− µ

4π
σ

∫
∂Ω

φ(p∗)n(p∗)× p− p∗

‖p− p∗‖3
ds(p∗),

(7)
where n is the unit vector normal to the boundary and ds is
the differential surface element for ∂Ω.

The electric scalar potential φ in Ω due to a current dipole is
governed by a boundary value problem (BVP) for the Poisson
equation [13]:{

σ∇2φ(p) = ∇ · (Qδ(p− p′)), p ∈ Ω,

σn(p) · ∇φ(p) = 0, p ∈ ∂Ω.
(8)

Once φ is known, the magnetic field at any point outside
the head can be evaluated by Equation (7).

III. METHODOLOGY

We propose the application of the Method of Fundamental
Solutions (MFS) [14] via the Method of Particular Solutions
(MPS) for solving the potential problem (8). The MFS ap-
proximates the solution u of the given homogeneous BVP
by a linear combination of fundamental solutions K of the
governing homogeneous PDE, i.e.,

u(p) ≈
∑
ξj∈Ξ

cjK(p, ξj), p ∈ Ω, (9)

where Ξ is a set of centers located on a fictitious boundary
outside the physical domain Ω (Figure 1) in order to avoid po-
tential singularities of K in the representation of the solution.
The coefficients cj of the linear combination are determined
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Fig. 1. Collocation points (crosses) and centers (dots) distributed on the
physical and fictitious boundaries, respectively.

by enforcing equality of u(p) to the boundary conditions at a
finite set of collocation points.

An inhomogeneous problem can be reduced to a homo-
geneous one by the MPS, i.e., by considering the solution
u as the sum of a particular solution up and its associated
homogeneous solution uh.

The governing PDE of the scalar potential problem in Ω is
a Poisson equation (see Section II). Let us express the scalar
potential function in Ω, by means of the MPS, as

φ(p) = φh(p) + φp(p). (10)

An analytical expression for a particular solution φp of the
PDE of the BVP in Ω, when a neural source is located at
p′ ∈ Ω, is known [13]:

φp(p) =
1

4πσ

p− p′

‖p− p′‖3
·Q. (11)

Therefore, the homogeneous term φh is given by the solu-
tion of the following BVP:{

∇2φh(p) = 0, p ∈ Ω,

n(p) · ∇φh(p) = −n(p) · ∇φp(p) p ∈ ∂Ω.
(12)

and it can be approximated, by means of MFS, as a linear
combination of fundamental solutions for the 3D Laplace
equation:

φ̂h(p) =
∑
ξj∈Ξ

cjK(p, ξj), p ∈ Ω, (13)

where Ξ is the set of centers and the fundamental solution
for the Laplace equation in three dimensions is K(p, q) =
(4π‖p− q‖)−1.

The only geometric quantities needed to compute the poten-
tials are the normals to the boundary and the distances between
the boundary collocation points and the centers; therefore,
the proposed method is truly meshfree. Moreover, no costly
numerical integration is needed and its implementation is
straightforward.

It is worth mention that for certain problems and suitably
smooth data and domains, the proposed method has been
proved to be exponentially convergent [15]–[17], whereas the
convergence rate of BEM and FEM is limited by the maximum
degree of the polynomials adopted as basis functions.
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IV. NUMERICAL RESULTS

In order to assess the viability of the proposed approach
in solving the MEG forward problem for a realistic head
geometry, we have carried out a comparison with the BEM
state-of-the-art formulation [5], [18].

First we compare the accuracy of the MFS solver and the
BEM solver in evaluating the scalar potential on the inner skull
surface. A single unitary dipole source is simulated in the brain
(with electrical conductivity equal to 0.2 S/m) at roughly 1 cm
from the inner skull surface. This choice is appropriate if one
considers the location of the real neural sources in the cerebral
cortex. Figures 2 and 3 show the potential map for the finest
discretization of the solution.

Fig. 2. Electric scalar potential [V] on the inner skull surface for a unitary
dipole–results were obtained by the BEM solver with 4500 triangles.

Fig. 3. Electric scalar potential [V] on the inner skull surface for a unitary
dipole–results were obtained by the MFS solver with 4500 collocation points
and 2250 centers.

Since there is no way of knowing the ground truth solution
for realistic geometries, we choose a BEM solution obtained
with a fine mesh (4500 triangles) as a reference. The relative
2-norm is adopted to estimate the accuracy with respect to the
reference solution, as reported in Table I.

TABLE I
COMPARISON OF THE SOLUTIONS FOR THE POTENTIAL PROBLEM

OBTAINED WITH THE PROPOSED MFS SOLVER AND THE
STATE-OF-THE-ART BEM WITH RESPECT TO A REFERENCE SOLUTION.

N MFS Estimated Accuracy BEM Estimated Accuracy

500 0.32687 0.54554
1500 0.11374 0.17825
2500 0.09295 0.18846
3500 0.08206 0.11594
4500 0.05849 N/A

The results shown in Table I suggest that the MFS solver
outperforms the BEM solver. Moreover, the MFS provides
a reduction in CPU time that becomes more significant as
higher accuracy is requested, since no numerical integration is
required in the assembly of the system matrix.

Reusing the same real geometry, we now compare the com-
puted external magnetic fields. In this case, we have assumed a
set of 1, 000 unitary dipole sources randomly distributed inside
the brain (red points in Figure 4), with random orientations.

Fig. 4. Real head geometry: red points are dipole sources; blue squares are
sensor locations.

The same figure shows the magnetic field evaluation points
(blue squares) on a SQUID helmet. Figures 5 and 6 show
the magnetic field map obtained with BEM and with MFS,
respectively.

The maps depict a good agreement between the two solu-
tions, with a 2-norm relative difference equal to 0.12204.

V. CONCLUSION

In this paper we have shown that the solution of the
MEG forward problem can be sought by the Method of
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Fig. 5. BEM magnetic field map [T]–1, 000 unitary dipole sources randomly
distributed inside the brain with random orientations.

Fig. 6. MFS magnetic field map [T]–1, 000 unitary dipole sources randomly
distributed inside the brain with random orientations.

Fundamental Solutions via the Method of Particular Solutions.
The proposed method is a boundary-type, integration-free and
easy-to-implement alternative to mesh-based methods, such as
the widely used Boundary Element Method.

We have successfully compared the proposed approach with
the state-of-the-art BEM formulation in solving the MEG
forward problem with a realistic head model. The method
needs no meshing algorithms in the pre-processing stage –
which simplifies the experimental setup – and no numerical
quadrature to assemble the system matrix – which improves
the computational cost and is important when incorporating
the forward solver within the solution of the inverse problem
needed for identification of the neural sources.
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[11] Y. Okada, A. Lahteenmäki, and C. Xu. Experimental analysis of
distortion of magnetoencephalography signals by the skull. Clinical
Neurophysiology, 110(2):230–238, 1999.

[12] R. Plonsey and D. Heppner. Considerations of quasi-stationarity in elec-
trophysiological systems. Bulletin of Mathematical Biology, 29(4):657–
664, 1967.

[13] J. Sarvas. Basic mathematical and electromagnetic concepts of the bio-
magnetic inverse problem. Physics in Medicine and Biology, 32(1):11,
1987.

[14] G. Fairweather and A. Karageorghis. The method of fundamental solu-
tions for elliptic boundary value problems. Advances in Computational
Mathematics, 9(1):69–95, 1998.

[15] R.S.C. Cheng. Delta-trigonometric and spline methods using the
singlelayer potential representation. PhD thesis, University of Maryland,
1987.

[16] M. Katsurada. Charge simulation method using exterior mapping func-
tions. Japan Journal of Industrial and Applied Mathematics, 11(1):47–
61, 1994.

[17] M. Katsurada and H. Okamoto. The collocation points of the fundamen-
tal solution method for the potential problem. Computers & Mathematics
with Applications, 31(1):123–137, 1996.

[18] A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc. OpenMEEG:
opensource software for quasistatic bioelectromagnetics. BioMedical
Engineering OnLine, 9(1):45, 2010.


	Introduction
	MEG Forward Problem Formulation
	Methodology
	Numerical Results
	Conclusion
	References

