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Abstract. The partition of unity (PU) method, performed with local radial basis
function (RBF) approximants, has already been proved to be an effective tool for
solving interpolation or collocation problems when large data sets are considered. It
decomposes the original domain into several subdomains or patches so that only lin-
ear systems of relatively small size need to be solved. In research on such partition
of unity methods, such subdomains usually consist of spherical patches of a fixed
radius. However, for particular data sets, such as track data, ellipsoidal patches
seem to be more suitable. Therefore, in this paper, we propose a scheme based on
a priori error estimates for selecting the sizes of such variable ellipsoidal subdo-
mains. We jointly solve for both these domain decomposition parameters and the
anisotropic RBF shape parameters on each subdomain to achieve superior accuracy
in comparison to the standard partition of unity method.

1 Introduction

Radial basis function (RBF)-based methods [4] find their natural applications
in various fields, such as image reconstruction, resolution of partial differen-
tial equations and population dynamics. Two common computational issues
arising when we deal with real situations involve creating approximations
from a large number of scattered points and the one of producing accurate
approximations despite ill-conditioned linear systems.

In this article, we attack the first issue with an efficient computation by
means of the Partition of Unity (PU) method [8]. It enables us to decompose
the original interpolation problem (involving a matrix of the same size as
the amount of data) into many small ones defined on subdomains/patches
of the original domain. However, the design of these subdomains (and con-
sequently the number of points lying on each patch) affects the accuracy of
the approximation.
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Generally, when the PU method is used for scattered data interpolation,
the PU subdomains are assumed to be balls of a fixed radius [2]. In [3], a
local approach was proposed via the PU method that selects optimal local
approximants: both the shape parameter and the patch radius were selected
such that error estimates were minimized. This strategy was more effective
at dealing with points that were inconsistently distributed throughout the
domain.

This previous work allowing varying patch radii was limited to only spher-
ical patches. Such a scheme is not completely suitable for particular data dis-
tributions, such as track data [1]. To address this situation we propose to use
ellipsoidal subdomains, allowing one free domain parameter per dimension.
This adaptation requires careful selection of the PU weights to guarantee
consistency, which we detail in our proposal.

To match the anisotropic structure of these subdomains, we use anisotropic
Wendland’s functions [7] to form our local approximants. The values of the
shape parameters and of the semi-axes of patches are selected by minimizing
theoretical error estimates. In particular, as in [3], we focus our attention on
the Leave One Out Cross Validation (LOOCV) scheme [6]. By jointly optimiz-
ing for both the domain and RBF parameters, we are able to improve on the
computational cost from [3]. We also factor in the impact of ill-conditioning
during this optimal parameter search to balance accuracy and stability.

The outline of the paper is as follows. In Section 2, we briefly review
the main theoretical aspects of the RBF-PU method. Section 3 is devoted
to the presentation of the proposed scheme which makes use of ellipsoidal
patches. Numerical experiments are presented in Section 4. Section 5 deals
with conclusions and work in progress.

2 The RBF-based Partition of Unity method

The approximation problem considered in this paper is formulated as follows.
Consider a set XN = {xi, i = 1, . . . , N} ⊆ Ω of distinct data points (or data
sites or nodes), arbitrarily distributed on a domain Ω ⊆ RM , with an associ-
ated set FN = {fi = f(xi), i = 1, . . . , N} of data values (or measurements
or function values), which are obtained by sampling some (unknown) function
f : Ω −→ R at the nodes xi. The scattered data interpolation problem con-
sists of finding a function R : Ω −→ R such that R (xi) = fi, i = 1, . . . , N .

To this end, we take R ∈ HΦ(XN ) = span{Φ(·,xi), xi ∈ XN}, where
Φ : Ω × Ω −→ R is a strictly positive definite and symmetric kernel. More
specifically, we take RBFs (radial kernels), and thus, we suppose that there
exist a function φ : [0,∞) → R and a shape parameter ε > 0 such that for
all x,y ∈ Ω we have Φ(x,y) = φε(||x− y||2) := φ(r). In Table 1, we list the
strictly positive definite RBFs that will be used later. Note that the RBFs
depend on a shape parameter ε > 0 that significantly affects the accuracy of
the approximation. We will later refer to the functions reported in Table 1
as isotropic kernels, meaning that ε is a scalar.



RBF-PU interpolation with variable subdomains 3

Table 1. Examples of strictly positive definite isotropic radial kernels.

RBF φ(r)

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

Matérn C2 (M2) e−εr(εr + 1)

Wendland C2 (W2) max (1 − εr, 0)4 (4εr + 1)

By using RBFs, the interpolant assumes the form

R(x) =

N∑
k=1

αkφ(||x− xk||2), x ∈ Ω. (1)

The coefficients α = (α1, . . . , αN )T in (1) are determined by solving the
linear system Aα = f , where the entries of the matrix A ∈ RN×N are given
by (A)ik = φ(||xi − xk||2), i, k = 1, . . . , N , and f = (f1, . . . , fN )T . The
uniqueness of the solution is ensured by the fact that the kernel Φ is strictly
positive definite and symmetric.

One drawback of this method is the computational cost associated with
the solution of potentially large linear systems. The PU method, presented
below, enables us to overcome such issue. At first, we cover the domain Ω
with d overlapping subdomains Ωj . To be more precise, we require a regular
covering, i.e., {Ωj}dj=1 must fulfill the following properties:

i. for each x ∈ Ω, the number of subdomains Ωj , with x ∈ Ωj , is bounded
by a global constant C1,

ii. each subdomain Ωj satisfies an interior cone condition,
iii. the local fill distances hXNj

are uniformly bounded by the global fill

distance hXN
, where XNj

= XN ∩Ωj .

Once we select weight functions Wj , j = 1, . . . , d, the PU interpolant can
be defined as

I (x) =

d∑
j=1

Rj (x)Wj (x) , with Rj (x) =

Nj∑
k=1

αjkφ(||x− xjk||2),

where Rj is defined on the subdomain Ωj , Nj indicates the number of points

on Ωj and xjk ∈ XNj
, with k = 1, . . . , Nj . Therefore, the problem leads to

solving d linear systems of the form Ajαj = f j , where αj = (αj1, . . . , α
j
Nj

)T ,

f j = (f j1 , . . . , f
j
Nj

)T and the entries of Aj ∈ RNj×Nj are given by (Aj)ik =

φ(||xji − x
j
k||2), i, k = 1, . . . , Nj .

Since the coefficients of the local interpolants are determined by imposing
the local interpolation conditions, the functions Wj , j = 1, . . . , d, must form
a partition of unity. Moreover, we also require that such partition of unity
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is k-stable (see, e.g. [7] Def. 15.16, p. 276), which in particular implies that
supp(Wj) ⊆ Ωj . For instance, such conditions are satisfied for the well-known
Shepard’s weights; refer e.g. to [8] for further details.

3 Optimal local interpolants for the RBF-based PU
method

We now focus on the selection of the PU patches, and we remove the stan-
dard assumption that they consist of balls of a fixed radius. Therefore we
consider ellipsoidal patches, i.e., each Ωj is defined through its semi-axes

δj = (δj1, . . . , δ
j
M ). Moreover, in what follows, we use anisotropic kernels. We

remark that any isotropic radial kernel can be turned into an anisotropic one
by using a weighted 2-norm instead of an unweighted one. Thus, to fix the
ideas, on a subdomain Ωj it is enough to replace the scalar value of the shape
parameter εj with a symmetric positive definite matrix Ej . More precisely,

we consider the special case for which Ej = diag(εj1, . . . , ε
j
M ). This allows us

to choose a different scaling along the dimensions of the problem.
Our parametrization strategy consists of selecting both εj = (εj1, . . . , ε

j
M )

and δj such that the error estimates on Ωj are minimized. This study is
motivated by the fact that the PU approximation error is governed by the
local ones ([7] Th. 15.19, p. 277).

3.1 Local error estimates

For a general overview about error estimates refer e.g. to [4]. Here we focus
on error predictions that are popular in statistics, and precisely on cross
validation schemes. We describe the cross validation algorithm that is applied
on a given Ωj to get a local a priori error estimate [4]. At first, we split the
set XNj into two disjoint subsets: a training set TNt

j
and a validation set

VNv
j

such that N t
j + Nv

j = Nj . The set TNt
j

is used to construct a surrogate

or partial approximation that is validated via the set VNv
j
. To simplify the

following discussion, on Ωj we introduce the following block decomposition
of the local interpolation matrix

Aj =

(
Attj Atvj
Avtj Avvj

)
,

where, for example, the block Atvj is generated using training points to evalu-
ate and validation data as centers of the kernels. Similarly, we partition αj =
(αtj ,α

v
j )
T , f j = (f tj ,f

v
j )
T . With this notation, the prediction at the points

in the validation set using the training set is Avtj (Attj )−1f tj . In other words,

|fvj −Avtj (Attj )−1f tj | provides information about the accuracy of the fit on the

j-th subdomain. Then, we take q partitions of VNv
j
, VNv

j
= {V(1)

Nv
j
, . . . ,V(q)

Nv
j
},
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such that

V(k)
Nv

j
∩ V(i)

Nv
j

= ∅, for i 6= k, with ∪qk=1V
(k)
Nv

j
= XNj

, and T (k)

Nt
j

= X (k)
Nj
\V(k)

Nv
j
.

Thus, as error estimate we consider the residual left over by the interpolants
evaluated at the validation sets. The LOOCV scheme is a particular case of

the general setting presented above for which q = Nj and each V(k)
Nv

j
= xjk.

Moreover for the LOOCV scheme, Avvj is the diagonal element of A−1j and
thus, being a scalar, the computation simplifies. Indeed, as error estimate for
the j-th subdomain we have (see also [6])

ej = ||(αj1/(A
−1
j )11, . . . , α

j
Nj
/(A−1j )NjNj

)||p,

where in what follows we fix the index of the discrete norm to p = 2.
In our PU context, using both anisotropic kernels and ellipsoidal patches,

we have that ej = ej(εj , δj). In fact, the shape parameter affects the accuracy
of the RBF approximant and, for the PU method, the accuracy also depends
on which points are involved in the computation of the local interpolants.

3.2 Description of the PU-LOOCV method

To minimize the LOOCV error estimates we use a multivariate optimiza-
tion tool. This allows us to reduce the computational cost of the procedure
presented in [3]. To be more precise, we consider the Nelder-Mead simplex al-
gorithm [5]. Without going into details, we remark that on Ωj , given an initial
guess (ε0j , δ

0
j ), it provides an approximation of the optimal values by comput-

ing subsequent simplices and only needs function evaluations of the objective
function [5]. In particular, for the implementation we use the Matlab soft-
ware and the fminsearch.m routine. Of course, we also need to impose the
following constraints on the parameters we optimize:

εjk > 0, and δ+ ≥ δjk ≥ δ
∗, k = 1, . . . ,M, j = 1, . . . , d,

where δ∗ ∈ R is chosen so that patches form a covering of the domain and
δ+ ∈ R is selected so that for each x ∈ Ω the number of subdomains Ωj ,
with x ∈ Ωj , is bounded.

In this way, after optimizing the parameters (εj , δj), j = 1, . . . , d, we
have a PU covering made of ellipsoids that is also regular. In fact, each of
the patches satisfies an interior cone condition. This assumption is trivially
verified for balls. However, it is also true for ellipsoids (see, e.g. [7] Pr. 11.26,
p. 195).

Finally, in order to build a consistent PU setting, we also need to carefully
choose the compactly supported functions for the PU Shepard’s weights,
which are here constructed with the W2 function. Since we have ellipsoids,
we need to select the anisotropic form of the W2 function. Thus, εj , which
identifies the support of the compactly supported RBF, is taken so that
supp(Wj) = Ωj , j = 1, . . . , d.
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4 Numerical experiments

Our experiments focus on bivariate interpolation. In Subsection 4.1, we show
the numerical results obtained by considering known functions and artificial
track data [1]. Then, in Subsection 4.2 we also take into account real data by
analyzing an application to Earth’s topography.

4.1 Experiments with artificial data

To illustrate the accuracy of the proposed method, we evaluate the inter-
polant on a grid of s = 402 points x̃i, i = 1, . . . , s, on Ω = [0, 1]2 and
we calculate Root Mean Square Error (RMSE). The patch centers are con-
structed as a grid of t2 points on Ω, where t is the number of tracks. Of
course this design will affect the accuracy of the approximation. Neverthe-
less, the scheme proposed here, allowing to choose variable subdomains, is
consequently less sensitive to this choice.

We show numerical results obtained by considering five sets of track data
on Ω = [0, 1]2 sampled from the 2D Franke’s function, see e.g. [4]. In partic-
ular, the results of using LOOCV to optimize the semi-axes of the patches
and the shape parameters of the local basis functions are reported in Table 2.
They are compared with the classical PU method obtained by taking a grid
of t2 points on Ω as PU centers and a fixed patch radius δ = δ∗. Furthermore,
we consider the isotropic IMQ kernel with shape parameter equal to 1. We
select such shape parameter arbitrarily. Indeed, one of the main advantages
of the proposed method is the one of automatically choosing safe values for
the shape parameters. Of course, different values might lead to more accu-
rate approximations, but it is not possible to provide a priori optimal or safe
shape parameters. Moreover, we also report the CPU times. Tests have been
carried out with the Matlab software on an Intel(R) Core(TM) i7-6500U
CPU 2.59 GHz processor. In Figure 1 (left), we show an example of 2000
track data [1] and the ellipsoidal patches obtained via PU-LOOCV.

From the numerical experiments we can note that the classical PU method,
which makes use of circular patches, is not able to accurately fit the data,
especially when a large number of points is involved. This might be due to a
non-optimal selection of the shape parameter and/or of the patch size for the
classical PU. In this sense, the PU-LOOCV reveals its robustness, selecting
optimal values for those parameters and providing accurate results also when
N grows. Finally, we point out that the proposed scheme, besides extending
the idea of the method presented in [3] to subdomains having different shapes
and to anisotropic kernels, thanks to the use of an optimization routine for
the minimization problem, it also speeds up the procedure. For instance, us-
ing the same scheme outlined in [3] would take about 300 s for 1000 data.
Moreover, note that Table 2 shows that the PU-LOOCV with 1000 points is
more than twice as accurate and more than twice as fast than the classical
PU method with 160000 points.
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Table 2. RMSEs, and CPU times obtained by using the PU-LOOCV and classical
PU methods.

N RMSE CPU time

PU PU-LOOCV PU PU-LOOCV

1000 (20 × 50) 3.27E–3 8.02E–5 0.5 43.3
2000 (25 × 80) 1.08E–3 2.58E–5 1.2 64.7
4000 (40 × 100) 1.28E–3 4.67E–6 7.2 136.0
8000 (50 × 160) 3.48E–4 1.25E–6 17.4 189.0
16000 (80 × 200) 3.49E–4 4.55E–7 109.0 475.0

4.2 Experiments with real data

To test the method with real data, we consider points extracted from maps.
We take, as example, a map of Korea (plotted in the right frame of Figure 1)
and we extract 40 tracks containing 100 points. The function values, being
real samples of the elevation above sea level, are truly oscillating and thus
the interpolation problem is particularly challenging. We also extract a grid
of 402 points to evaluate the error.

By using the M2 kernel, the RMSE for the PU-LOOCV is equal to 2.58E−
2. The classical PU with a fixed radius δ = δ∗ completely fails. However, for
the classical PU, taking anisotropic kernels with variable parameters and δ =
3δ∗ as fixed size of the circular patches gives RMSE=4.21E−2. In other words,
we reach about the same accuracy, but this is not completely satisfying.
Indeed, if we take circular subdomains of radius 3δ∗, the average of points on
each patch is about 52, while the PU-LOOCV only requires on average 16
data per patch. Therefore, especially with real data, the approximation by
means of an optimized PU method becomes essential.

5 Conclusions

In this paper we presented a scheme for the optimal selection of local ap-
proximants in the PU method. The scheme, based on ellipsoidal patches, is
particularly suitable for track data. Work in progress consists in comparing
the LOOCV scheme with other a priori error estimates and in selecting suit-
able locations for the patch centers. Indeed, here they are taken as grids of
points, but this might be restrictive. Further investigations for more efficient
optimization routines are also needed.
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