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Abstract

Weak electrical currents in the brain flow as a consequence ofacquisition, processing and transmission
of information by neurons, giving rise to electric and magnetic fields, which can be modeled by the quasi-
stationary approximation of Maxwell’s equations. Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) techniques allow for reconstructing the cerebral electrical currents and thus investigating the
neuronal activity in the human brain in a non-invasive way. This is a typical electromagnetic inverse prob-
lem which can be addressed in two stages. In the first one a physical and geometrical representation of
the head is used to find the relation between a given source model and the electromagnetic fields generated
by the sources. Then the inverse problem is solved: the sources of measured electric scalar potentials or
magnetic fields are estimated by using the forward solution.Thus, an accurate and efficient solution of the
forward problem is an essential prerequisite for the solution of the inverse one. The authors have proposed
the method of fundamental solutions (MFS) as an accurate, efficient, meshfree, boundary-type and easy-
to-implement alternative to traditional mesh-based methods, such as the boundary element method and the
finite element method, for computing the solution of the M/EEG forward problem. In this paper, further
investigations about the accuracy of the MFS approximationare reported. In particular, the open question
of how to efficiently design a good solution basis is approached with an algorithm inspired by the Leave-
One-Out Cross Validation (LOOCV) strategy. Numerical results are presented with the aim of validating
the augmented MFS with the state-of-the-art BEM approach. Promising results have been obtained.
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1. Introduction

Nowadays, several different technologies are available for human brain imaging. Anatomy
of the brain can be investigated by computed tomography (CT)[24] and magnetic resonance
imaging (MRI) [9], which provide high resolution images. However, other imaging techniques
are required to obtain information on the brain activity.

This task can be performed with high spatial accuracy, in theorder of a few millimeters, by
means of nuclear imaging methods, such as positron emissiontomography (PET) [31], the single
photon emission computed tomography (SPECT) [25], and the functional magnetic resonance
imaging (fMRI) [7], which are related to changes of blood flowor oxygen transportation in the
brain. The temporal resolution of PET and SPECT is in the order of seconds. fMRI data might
be acquired with a resolution of 100 ms, but properties of theblood flow practically limit the
temporal resolution to 1 s.

A better temporal resolution can be obtained by using electromagnetic imaging techniques.
In fact, acquisition, processing and transmission of information by neurons generate weak electri-
cal currents flowing in the human brain: electroencephalography(EEG) and magnetoencephalog-
raphy (MEG) can be used to obtain a better temporal resolution, in the order of 1 ms, with typ-
ical spatial resolutions in the order of 1 cm. In addition, the electromagnetic techniques are
non-invasive, whereas, in nuclear imaging techniques, severe limitations are imposed by the
maximum radiation dose that is admissible in order to safeguard the patient.

Electric potential and magnetic field distributions can be measured by means of an array of
electrodes on the scalp, for EEG, or superconducting quantum interference devices (SQUID),
for MEG, located near the head. EEG can detect activity both in thesulci and at the top of the
corticalgyri, whereas MEG is most sensitive to activity originating in sulci and provides a better
spatial resolution [20]. An inverse problem must be solved to estimate the neuronal activity
sources corresponding to a set of measured data (electric potential or magnetic fields).

The solution of this inverse problem requires an accurate forward solver. Such a numerical
tool computes the scalp potential and/or magnetic fields generated by a set of current sources
representing the neural activity, given knowledge of both the physical properties of the biological
tissues and the geometry of the head [19]. The efficient solution of the M/EEG forward problem
is investigated in this paper.

So far, the M/EEG forward problem has been addressed by traditional mesh-based numeri-
cal methods [19]. Among these methods, the Boundary ElementMethod (BEM) [21, 45, 26]
is the common choice because of its efficiency with respect to the Finite Elements Method
(FEM) [44, 8, 43]. In particular, the symmetric Galerkin BEMis currently implemented in
widely used software packages for M/EEG source analysis [32, 39]. However, the BEM involves
costly numerical integration, requires an often nontrivial meshing of the domain boundaries at
high quality and could potentially introduce mesh-relatedartifacts in the reconstructed neural
activation pattern. The forward solver needs to be accurateand fast in order to act as an efficient
component within an inverse solver.

To this aim, the meshless Method of Fundamental Solutions (MFS) [13] has been proposed
by the authors [3, 4] for solving the boundary value problem (BVP) which arises in the M/EEG
context. The MFS approximates the solution of the given BVP by a linear combination of funda-
mental solutions of the governing PDE. Each of these basis functions which serve as a component
of the linear combination is defined by akernel centerlocated on a fictitious boundary outside
the physical domain. The coefficients of the linear combination are determined by enforcing the
boundary conditions at a set ofcollocation pointson the true physical boundary.
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Unlike many other numerical methods, normals to interfacesand pairwise distances between
points are the only geometric quantities that are needed, sothe MFS is meshfree and, in terms
of computational time, benefits from the elimination of the meshing task in the pre-processing
stage. A reduction of CPU time can also be obtained, with respect to the state-of-the-art Galerkin
BEM, in the process of assembling the system matrix. This advantage plays an important role
when applying the forward solver within the iterative solution of the inverse problem. Further
benefits come from the ease of implementation, which makes computer codes very flexible in
contrast to mesh-based solvers.

This paper investigates strategies to improve the accuracyof the MFS approximation without
a decrease in efficiency. It has already been established that the accuracy ofthe MFS approxima-
tion does depend on the location of the centers [11]: indeed,finding a practical and efficient way
of answering the question of how to pick the centers remains an open problem in the MFS con-
text. In this paper, we approach the determination of centerlocations by using a strategy inspired
by the leave-one-out cross validation (LOOCV) algorithm, which originates in the statistics lit-
erature [35] and which has been successfully applied also inthe MFS context [10].

The paper is organized as follows. In Section 2 the state of the art of the M/EEG forward
solution is summarized. In Section 3 the MFS solver for the M/EEG context is discussed. The
LOOCV-like approach is presented in Section 4. In Section 5,numerical results are analyzed for
a realistic single-shell head geometry, by addressing numerical accuracy, convergence and com-
putational load comparing them with a state-of-the-art Galerkin BEM solver. A brief conclusion
completes the paper.

2. State of the art of the M/EEG forward solution

Grid based numerical methods (FEM, BEM) are usually adoptedin solving PDEs that model
problems in engineering and science. These methods are often based on the discretization of the
whole problem domain (FEM), using a mesh to support the localapproximation. For problems
in complicated geometries, the mesh generation is a time-consuming and costly process, even
when automatic algorithms are used.

Wherever possible, boundary-type methods which require only a boundary discretization,
may be preferred. Hence, BEM has been widely used, even if it may introduce drawbacks in the
mathematical formulation of the problem and in the numerical integration of singular functions.
Even without the need to discretize a 3D volume, the meshing of 3D surfaces is still a non-trivial
task.

In the last decades, meshfree methods have been proposed andapplied in many fields [14].
Meshfree methods allow for the numerical solution of PDEs without a predefined problem do-
main mesh: the approximation is performed only by nodes thatare distributed in the problem
domain, without any underlying connection between them. Among these methods, kernel-based
collocation methods [15] have recently received great attention.

The main idea of kernel-based approximation methods is to estimate the solution of the given
BVP by means of a linear combination of so-calledkernelfunctions, which are defined using a
set of points namedcenters. The differential equation and the boundary conditions are enforced
at a discrete set of points namedcollocation points.

So far, traditional mesh-based methods, such as FEM [44, 8, 43, 40, 42] and BEM [22, 21,
45, 26], have been implemented to address the EEG forward problem in domains generated by
realistic head models [19]. Even though FEM can handle the most realistic head models, the
BEM has become the method of choice for many practical applications.
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The success of the BEM in M/EEG forward solving is mainly due to its nature as a boundary-
type method: not only does it avoid cumbersome and computationally expensive pre-processing
3D mesh generation, but it also has low computational cost when compared to the FEM for a
given head model and desired numerical accuracy [1], since it requires computation only on
the boundaries. Currently, the symmetric Galerkin BEM proposed in [26] can be considered
the state-of-the-art method for solving the M/EEG forward problem. This method is imple-
mented in the OpenMEEG library, which has been adopted by various widely used software
packages [32, 39]. In the symmetric Galerkin BEM approach, both the electric scalar potential
and its normal derivative on the interfaces are unknown. Linear and constant functions are used
to approximate the potential and its normal derivative on the interfaces, respectively, and the
residual minimization is carried out by a mixed integral approach, i.e., by using constant weights
for the potential and linear weights for its normal derivative.

The difficulties in handling the geometric complexity of biologicalstructures motivated the
recent incorporation of meshfree methods in M/EEG research. In [41], the finite points mixed
method (FPMM) is proposed as a meshfree method for solving the EEG forward problem. In [2,
5], the smoothed particle hydrodynamics (SPH) method is reformulated to be applied to the MEG
forward problem. However, these methods require computational nodes distributed in the entire
domain; therefore, though they avoid both the mesh generation step in pre-processing and costly
numerical integration in assembling the system matrix, BEMsolvers may outperform them in a
computational cost per accuracy comparison [41].

3. MFS modeling of brain activity

In order to solve the MEG problem, posed as a set of coupled BVPs for the 3D Laplace
operator, a head model consisting of nested regions with piecewise-constant conductivity is for-
mulated. LetL be the number of nested regions in the domainΩ that represents the head,Ωℓ be
the generic region with outer (toward the air outside the body) boundary∂Ωℓ and conductivity
σℓ, and letIℓ,ℓ+1 = ∂Ωℓ ∩ ∂Ωℓ+1 be the interface between the regionℓ and the regionℓ + 1. The
regionΩL+1 surrounding the head corresponds to the ambient air which isunbounded and has
negligible conductivity.

The problem can be formulated as the following set of BVPs coupled by interface conditions:























σℓ∇
2φℓ(p) = Sℓ(p) p ∈ Ωℓ

φℓ(p) = φℓ+1(p) p ∈ Iℓ,ℓ+1|ℓ,L

σℓn(p) · ∇φℓ(p) = σℓ+1n(p) · ∇φℓ+1(p) p ∈ Iℓ,ℓ+1

ℓ = 1, . . . , L (1)

whereφℓ is the electric scalar potential in theℓ-th region,n(p) denotes the outward unit normal
vector to the interfaceIℓ,ℓ+1 at p and the source termSℓ(p) can be expressed as follows:

Sℓ(p) =











∇ · (Qδ(p − p′)) source atp′ ∈ Ωℓ
0 otherwise.

(2)

The quantityQδ(p − p′) is the source current density modeling a single neural source, for the
sake of simplicity. It can be viewed as a current dipole of moment Q located atp′ ∈ Ω. By
applying the superposition principle, the general case of many dipoles can be straightforwardly
addressed.
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Brain (�1)

Skull (�2)

Scalp (�3)

Figure 1. Three regions (brain, skull and scalp) head model.

In considering a certain region independently, it is clear that the governing PDE is a Poisson
equation if a neural source is located in that region or a Laplace equation otherwise. A model
with three nested regions (brain, skull and scalp) is commonfor the EEG problem (Figure 1).
However, other regions could be added to improve the model ofthe head, e.g., cerebrospinal fluid
and/or distinct regions for gray and white matter. Anyway, a homogeneous model of the high-
conductivity brain compartment is sufficient to solve the MEG forward problem [21, 38]. The
authors have proposed the Method of Fundamental Solutions (MFS) [3, 4] for solving the M/EEG
forward problem. The MFS has been applied to various physical problems and its simplicity and
ease of implementation make the method itself quite popular.

The MFS is a kernel-based boundary-type method which can be applied when a fundamental
solution of the PDE is known. The MFS method gives the solution u of the given homogeneous
BVP by a linear combination offundamental solutions Kof the governing homogeneous PDE,
i.e.,

u(p) =
∑

ξ j∈Ξ

c jK(p, ξ j), p ∈ Ω, (3)

where:

K(p, ξ j) =
1

4π‖p − ξj‖
(4)

is the fundamental solution of the Laplace operator andΞ = (ξ j)
N
j=1

is a set ofcenterslocated on
afictitious boundaryoutside the physical domainΩ in order to avoid the singularities ofK in the
representation of the solution. The coefficients of the combination are determined by enforcing
it to satisfy the boundary conditions [3, 4] by means of a collocation procedure at a setP of
collocation points.

In applying the MFS, a fictitious boundary location strategyhas to be considered. A natural
choice is to conveniently inflate/deflate the physical boundary with respect to its centroid [3, 4].
The standard MFS formulation coupled with this simple heuristic method for the placement of
the fictitious boundaries provides an acceptable accuracy while maintaining a low computational
cost. This is a relevant task in integrating the forward solver into the inverse problem context to
determine the dipole sources location.

The governing PDE of the M/EEG forward problem in the regionℓ may be homogeneous or
inhomogeneous depending on the absence or the presence of a neural source in the region. While
MFS can be applied directly in the former case, in the latter case an inhomogeneous problem can
be reduced to a homogeneous one by the method of particular solution (MPS), i.e., by considering
the solutionu as the sum of a particular solutionup and its associated homogeneous solutionuh,
i.e.,

u = uh + up. (5)
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Then one gets the following homogeneous BVP foruh:














Luh(p) = fΩ(p) − Lup(p) = 0, p ∈ Ω,

Tuh(p) = f ∂Ω(p) − Tup(p), p ∈ ∂Ω,
(6)

whereL is an elliptic differential operator,∂Ω is the boundary of the domainΩ, andT and f ∂Ω are
the operator and the function that define the boundary conditions, respectively. Therefore, ifup

is known,u can be estimated by approximating the termuh via the MFS by usingM collocation
points andN centers, withM > N [3] ; the caseM = N is also standard for MFS methods [13],
but we restrict to theM > N case here to build on the format set forth in [4] and help ensure
greater stability [37].

The collocation, enforced on each interface, generates an overdetermined linear systemAc =
b which is solved in the least squares sense. To this aim, a setPℓ,ℓ+1 of collocation points on the
interfaceIℓ,ℓ+1 and a set of centersΞℓ are considered. In particular, for a head model with three
nested compartments (L = 3), we get

A =

























A(1)
1,2 A(2)

1,2

A(2)
2,3 A(3)

2,3

Â(3)
3,4

























, c =





















c(1)

c(2)

c(3)





















, b =





















b1,2

b2,3

b̂3,4





















, (7)

where the superscripts are directly related to the interfaces (eq. 1). In (7), the blocks of the
matrix A collect the continuity of the electric scalar potential andthe normal component of the
current density imposed at the collocation points which we refer to aspi ∈ PD

ℓ,ℓ+1 andpi ∈ PN
ℓ,ℓ+1

respectively,

A(s)
ℓ,ℓ+1 =













D(s)
ℓ,ℓ+1

N(s)
ℓ,ℓ+1













ℓ = 1, 2; s= ℓ, ℓ + 1, (8)

with

(D(s)
ℓ,ℓ+1)i, j = (−1)s+1K(pi , ξ j) pi ∈ PD

ℓ,ℓ+1, ξ j ∈ Ξℓ,

(N(s)
ℓ,ℓ+1)i, j = (−1)s+1σℓn(pi) · ∇K(pi , ξ j) pi ∈ PN

ℓ,ℓ+1, ξ j ∈ Ξℓ,

and the last block comprised of only the values

(Â(3)
3,4)i, j = σ3n(pi) · ∇K(pi , ξ j) pi ∈ PN

3,4, ξ j ∈ Ξ3.

The blocks of the known vector are

bℓ,ℓ+1 =

(

bD
ℓ,ℓ+1

bN
ℓ,ℓ+1

)

ℓ = 1, 2, (9)

with

(bD
ℓ,ℓ+1)i = αℓ+1φp,ℓ+1(pi) − αℓφp,ℓ(pi) pi ∈ PD

ℓ,ℓ+1,
(bN
ℓ,ℓ+1)i = αℓ+1σℓ+1n(pi) · ∇φp,ℓ+1(pi) − αℓσℓn(pi) · ∇φp,ℓ(pi) pi ∈ PN

ℓ,ℓ+1,

and, on the external interface,

(b̂
N
3,4)i = −α3σ3n(pi) · ∇φp,3(pi), pi ∈ PN

3,4.
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In the previous formulas the subscriptp of the electric scalar potential refers to the particular
solution (eq. 5), and the following position holds (Figure 1):

αℓ =











1, neural source inΩℓ,

0, otherwise.
(10)

An analogous procedure has been proposed for solving the EEGforward problem both in the
FEM [8, 42] and in some meshfree context [41, 2].

Once the scalar electric potential distribution is obtained, the forward problem for the mag-
netic flux density can be evaluated. In fact, the magnetic fluxdensityB at a pointp outside
Ω can be determined by means of the Ampère-Laplace-Biot-Savart law and a corollary of the
Divergence Theorem [36, 20]:

B(p) = Bs(p) +
µ

4π

L
∑

ℓ=1

(σℓ+1 − σℓ)
∫

Iℓ,ℓ+1

φ(p∗) n(p∗) ×
p − p∗

‖p − p∗‖3
ds, (11)

whereBs(p) is an analytical term:

Bs(p) =
µ

4π
Q ×

p − p′

‖p − p′‖3
. (12)

So the crucial point is to efficiently evaluate the scalar electric potential distribution.

4. Augmented MFS approach

Despite the simplicity and easy implementation of the MFS, there are some important issues
of the method which have not yet been satisfactorily addressed. In particular, as already pointed
out, the accuracy of the MFS approximation depends on the location of the centers, and picking
the centers in apracticalandefficientway is still an open problem. For example, in the scientific
literature [10] it has been emphasized that the stability ofthe MFS in an analytic domain is
controlled by the singularities in the analytic continuation of the solution. However, for non-
analytic boundary or data, and in coupled settings (e.g. M/EEG problems), there is still no way
to determine the location of the singularities in the analytic continuation of the solution. In this
paper we address this issue, namely how to choose the location of the sources in a satisfactory
way, though perhaps not an optimal one, in order to obtain augmented results when the MFS is
applied to M/EEG problems.

In the scientific literature two approaches are proposed. The first one is a dynamic one: the
center coordinates are determined along with the coefficients of the MFS expansion by costly
nonlinear least-squares solvers [28, 23]. Alternatively,in the static approach, the centers are
pre-assigned by, e.g., inflating/deflating the physical interfaces/boundaries or projecting the col-
location points along the surface normals. These normals must be approximated, which we did
using the raw mesh; this could be improved using a higher quality approximation to the sur-
face from the point cloud data [34]. In a two-dimensional domain, uniform distribution of the
collocation points around the boundary and the placement ofthe kernel centers on a pseudo-
boundary congruent to the physical boundary produces the most accurate and stable results. In
a three-dimensional domain, the uniform distribution of the collocation points on the surface of
an irregular region is not a trivial task; three-dimensional applications often produce collocation
points by scanning the surface of the object [27].

7
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Static strategies are computationally advantageous, but the location of the centers is con-
trolled by one or more parameters, such as an inflation/deflation coefficient or a distance from
the physical interface, which must be determined. In this problem we consider a single infla-
tion/deflation coefficientη as a free parameter which defines the degree to which the actual sur-
face is deformed into the fictitious boundary on which the kernel centers (also called the source
points in MFS literature) lie. Ifpi is a generic collocation point on the physical surface, the
corresponding centerξi on the fictitious surface is given by:

ξi = pi + ηn(pi). (13)

Figure 2 provides some insight regarding the role the parameterη has in defining the collo-
cation point and kernel center distribution.

Ω
∂Ω

ηn(pi)

pi

ξi

Figure 2. This computational setting involvesM collocation points (•), at which the PDE is enforced, located on the
brain surface.N source points (the MFS kernel centers,◦) are placed on a fictitious boundary (dashed line) outside of
the domainΩ. The fictitious boundary is defined by a parameterη: larger values ofη yield a greater “inflation” of the
brain surface, whereas smaller values ofη place the kernel centerξi closer to the surface (and, thus, potentially closer to
the collocation pointpi ).

The following sections define two possible metrics,CLOO andCGCV, which measure, in some
way, the quality of the solution for a givenη parameter. Prior to conducting the MFS solve to
determine the numerical solution to (1), theη which minimizes one of these quantities should
be found (through a standard numerical optimization methodsuch as BFGS [30]) and used to
generate the solution basis for the MFS approximation to theelectric scalar potential.

4.1. Leave one out cross validation

A strategy for finding a “satisfactory” parameterη is to use across validation approachwhich
originated in the statistics literature. In particular, the leave one out cross validation (LOOCV)
algorithm was proposed in [35] for optimizing the shape parameter of radial basis function (RBF)
interpolation systems; later, it was used as an inspirationin [16] for solving elliptic BVPs by RBF
methods. In [10] the same LOOCV-like algorithm is used in choosing the location of the sources
(i.e., the centers) in the MFS context.

We modify this idea here to select the parameterη by minimizing the (least squares) error
for a fit to the (boundary) data based on an MFS expansion for which one of the centers was
“left out”. To judge the quality of the solution as a contribution of that source center, we will

8
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also “leave out” the corresponding collocation point from which that center was inflated/deflated.
In reality, any choice of omitted collocation points is viable (including omitting more than one
collocation point per term, or potentially no collocation points), but this strategy, of omitting a
center and matching collocation point, is chosen to parallel the standard LOOCV strategy where
those points actually coincide.

In contrast to the standard setting detailed in [10], however, our collocation matrix is no
longer square, and thus has no inverse. Here we will work through the comparable derivation
and identify the new aspects of this situation.

Suppose that we have the full MFS solution,

u(p) =
N

∑

j=1

c jK(p, ξ j), p ∈ Ω, ξ j ∈ Ξ, (14)

in the region for which we have boundary data and want to determine an appropriateη inflation
parameter with which to define theξ j locations. There areN centersξ j and M collocation
locationspi , but because every point on the fictitious boundary is inflated/deflated from a point
on the true boundary, we can suitably order the points so that

ξi is the inflated point associated withpi , 1 ≤ i ≤ N.

This defines a relationship between all of the kernel centersand a subset of the collocation points.
The order of the remaining collocation pointspN+1, . . . , pM is immaterial.

The strategy behind LOOCV is that a collocation point for which we have boundary data is
intentionally omitted from the solution (14), and the errorof the resulting solution, as computed
without that data, at that collocation point is a measurement of how wrong the choice ofη is for
that point. Accumulating these residuals at all collocation pointspi with corresponding centers
ξi (each approximation omits bothξi andpi), gives a metric which judges the inappropriateness
of a given choice ofη. Minimizing this metric gives, in a sense, the optimal choice ofη.

For each collocation point which is “left out”, we have an associated permutation of the full
least squares system,

K =

























K(p1, ξ1) · · · K(p1, ξN)
...

K(pM , ξ1) · · · K(pM , ξN)

























, (15)

isolating the points that will be used to create the approximation (called the training set) and the
point at which the residual will be computed (called the validation set). This partitionsK into
blocks,

K =

(

Ktt Ktv

Kvt Kvv

)

, (16)

whereKtt ∈ R
M−1×N−1, Ktv ∈ R

M−1×1, Kvt ∈ R
1×N−1 andKvv ∈ R.

In practical terms,Ktt represents the collocation matrix for fitting only the training set and
Kvt represents the solution basis for evaluation at the validation points—the notationKvt is meant
to bolster this intuition of basis function for evaluation on the validation set and centered on the
training set. This follows the same notation as appeared in [15], but here the matrix is rectangular,
which poses new difficulties. If we similarly partition our least square system coefficient c and
boundary datab as

c =
(

ct

cv

)

, c ∈ RN, b =
(

bt

bv

)

, b ∈ RM, (17)

9
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the full approximation problem (leaving nothing out) is

Kc = b ⇒

(

Ktt Ktv

Kvt Kvv

) (

ct

cv

)

=

(

bt

bv

)

. (18)

Because the goal of leave one out cross validation is to determine the effectiveness of solution
parameters (such as the fictitious boundary parameterη), we use the predictions on the validation
set generated by solving the problem on the training set to define a residual denotedevt. If only
the training set is considered, the overdetermined linear systemKtt ĉ = bt defines the coefficients
ĉ for prediction on the validation set; those predictions take the formKvtĉ. We can therefore
define the residual at the validation point as

evt = bv − KvtK
+
tt bt, (19)

whereK+tt represents the pseudoinverse [18] ofKtt. This residual represents the accuracy for a
single validation pairpi , ξi ; it is then necessary to cycle through and give all pointsξi ∈ Ξ an
opportunity to contribute as a validation point, so multiple such residuals are combined as

CLOO =
∑

each validation point

e2
vt (20)

to form the metricCLOO we hope to minimize.
Simple though that may be to state, the cost of using (19) for each point left out becomes

prohibitive, since each point should, in theory, require solving a least squares problem involving
anM − 1× N − 1 sizedKtt. For a square system, [35] demonstrated that terms appearing in K−1

can be reused to compute each LOOCV component residual at (nearly) no additional cost. In our
current rectangular setting, we instead have the pseudoinverseG ≡ K+, which must satisfy

(

Gtt Gvt

Gtv Gvv

) (

Ktt Ktv

Kvt Kvv

)

=

(

IN−1

1

)

(21)

so long asK has full column rank (a prerequisite for a givenη to be suitable). This identity
provides

GtvKtt +GvvKvt = 0 =⇒ KvtK
+
tt = −G−1

vv GtvKttK
+
tt . (22)

which can be substituted back into (19) to give a slightly different form of the residual,

evt = bv +G−1
vv GtvKttK

+
tt bt. (23)

At this point, the distinction from the standard squareK case is most obvious: in that setting,
K+ = K−1 leavingKttK+tt = IN−1. In the standard leave one out cross validation setting described
in, e.g., [35], it is possible to reduce the cost of computing(23) by manipulating

(

ct

cv

)

= K+b =
(

Gtt Gvt

Gtv Gvv

) (

bt

bv

)

⇒ cv = Gtvbt +Gvvbv

to produce the identity

G−1
vv cv = bv +G−1

vv Gtvbt. (24)

10
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These manipulations, applied to the true inverse instead ofthe pseudoinverse, is what allows
LOOCV to maintain a reasonable cost in the square setting.

We argue that the same computation can be used in this least squares setting under reasonable
conditions. In particular, we note thatKttK+tt bt is a projection ofbt into range(Ktt). Thus, we can
write (IN−1−KttK+tt)bt = δ, that is,δ is the projection ofbt into range(Ktt)⊥. If we think about these
components in terms of the approximation problem we are trying to solve,KttK+tt bt represents the
component ofbt which is well represented by the Green’s kernel basis andδ represents the
component which cannot be effectively approximated. From this standpoint,

KttK
+
tt bt = bt − δ, (25)

and therefore

evt = bv +G−1
vv Gtvbt −G−1

vv Gtvδ

= G−1
vv cv −G−1

vv Gtvδ. (26)

If we believe that our MFS method is effectively approximating the boundary data, then theδ
term should be small (since there should be very little aboutthe data which is left unaccounted)
and could be discarded during the computation. The judgmentabout how small is appropriate
would have to be determined by the practitioner, but a good surrogate for the magnitude of each
of these LOOCVδ terms is the residual of the fullKc = b least squares problem, since the
difference between the two is only a single point.

4.2. Generalized cross validation

In case the LOOCV-like formula (26) discussed above proves infeasible because theδ term
was unacceptably large to approximate as 0, it is possible toemploy ageneralized cross valida-
tion (GCV) criterion [12, 17]. The GCV criterion uses the projection matrix

P = IM − K(KTK)−1KT (27)

which, after some manipulations, can be expressed in terms of the pseudoinverse as

P = IM − KK+. (28)

Note the similarity to the projection matrix that appeared in the LOOCV setting when attempting
to approximate each LOOCV residual. For the generalized cross validation, no data is left out
and the projection matrix is used to invoke the full residualby noting thatPb = b − Kc so
that bTP2b = ‖b − Kc‖22. The generalized cross validation criterion is defined using this as (see
[6, 15, 33])

Cgcv = bTP2b
M

(traceP)2
. (29)

Again, for the purposes of choosing the parameterη, we reject anyη values for whichK does not
have full column rank.

11
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Figure 3. Spherical domain - (a) cost function and (b) error on the electric scalar potential, both as a function of theη
parameter, for different values ofRMFS.

5. Numerical results

We approach the M/EEG forward problem by considering both a spherical domain and a
realistic (one compartment) head model. FieldTrip [32] default anatomy is used in the realistic
simulation and interfaces are extracted from T1-weighted MRI images by segmentation and then
smoothed. The numerical computations were carried out on a workstation equipped with a six
core Intel Xeon E5-2630@2.3 GHz and 24 GB of RAM. For the spherical model, the reference
is the analytical solution and the domain has a radius of 0.1 m. The benchmark for the realistic
geometry is a symmetric Galerkin BEM [26].

The number of unknowns both for MFS and BEM systems isN. The centers are located by
a procedure of inflation of the physical inner skull surface,starting from the collocation points,
randomly chosen on the inner skull surface. We take the distanceη of the centers from the inner
skull surface as a free parameter: the LOOCV-like procedureprovides a criterion (20) which
we minimize, using the Matlab functionfminbnd, to empirically chooseη in an optimal way.
Bounds for the parameterη are 1 (lower), 5 (upper).

We evaluate the electric scalar potential on the inner skullsurface for both the spherical and
the realistic homogeneous compartment model of the head (σbrain = 0.2 S/m), due to a unitary
current dipole that is placed at a realistic depth (≈ 1 cm from the inner skull surface). By defining
the ratio between the unknowns and the collocation points,RMFS, in Figure 3 we report the error
on the electric scalar potential as a function of theη parameter, for different values ofRMFS

andN = 5000. In the same figure, we show also the behavior of the cost function for varying
η parameter. In Figure 3, it appears that the LOOCV-like cost functions predicts theoptimalη
value quite accurately. The location of the minimum of the LOOCV-like error and RMS error are
quite similar. The results improve whenM � N, i.e. the MFS matrix is not tootall andskinny.

In the realistic setting, a BEM reference solution is considered by referring to a fine mesh
such thatN is equal to 4500. In Table 1 a performance comparison among MFS, MFS with
the LOOCV-like strategy and BEM for the potential problem isprovided. In this case, for both

12
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Table 1. Performance comparison among MFS, MFS with LOOCV-like and BEM for the scalar potential problem, in the
realistic setting. A BEM reference solution is considered with N = 4500.

N MFS MFS LOOCV-like BEM
Rel. diff. CPU time [s] Rel. diff. CPU time [s] Rel. diff. CPU time [s]

600 2.6282e–01 3.9616e–01 1.8091e–01 2.2773e+00 3.0873e–01 1.0135e+01
993 1.5016e–01 5.9742e–01 1.2030e–01 7.5209e+00 1.6552e–01 1.6627e+01
1643 6.2979e–02 2.1083e+00 5.4633e–02 1.8293e+01 9.0817e–02 4.0212e+01
2719 6.7595e–02 9.1017e+00 4.8583e–02 3.6801e+01 6.4571e–02 1.0366e+02
4500 6.6277e–02 3.7390e+01 4.4742e–02 2.4016e+02 N/A 2.8483e+02

Figure 4. Electric scalar potential map: BEM (left-side), MFS with LOOCV procedure (rigth-side).

MFS approaches, we consideredRMFS = 0.8. Relative differences in 2-norm with respect to
the BEM reference solution and CPU times are reported for varying N. It can be observed that
the LOOCV-like procedure allows for an improvement in termsof accuracy. In fact, solutions
obtained by means of the proposed strategy are slightly moreaccurate than the ones obtained
with the standard approach; the CPU times are higher but the centers are automatically and
reliably selected by means of the LOOCV-like procedure. Nevertheless, the proposed approach
is competitive with the BEM approach, not just from the accuracy standpoint but also when CPU
times are concerned.

In Figure 4, the electric scalar potential distributions obtained with BEM and MFS with
LOOCV-like procedure, are also reported for the previouslydescribed realistic head example at
the finest discretization.

6. Conclusion

The MFS is an attractive method for solving the M/EEG forward problem. It avoids complex
and time consuming meshing algorithms as well as troublesome and costly numerical integra-
tion routines, without sacrificing accuracy. Results for the electric potential problem (EEG) in a
realistic geometry confirmed a very good agreement with BEM reference solutions and a com-
petitive numerical performance. As a challenging new task,we have presented a first application
of an LOOCV-like strategy, for automatically determining the center locations and have obtained
promising results in doing so. Future work could involve efficiently optimizing the LOOCV cri-
teria as suggested in [29], which would be especially usefulduring the inverse problem solve
when different inflation/deflation parameters could provide better accuracy during each forward
solve. It may also be beneficial to experiment with choosing the number of source terms as part
of the LOOCV process.
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