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Abstract

Weak electrical currents in the brain flow as a consequen@aisition, processing and transmission
of information by neurons, giving rise to electric and magngelds, which can be modeled by the quasi-
stationary approximation of Maxwell’s equations. Eleetmoephalography (EEG) and magnetoencephalog-
raphy (MEG) techniques allow for reconstructing the ceaibblectrical currents and thus investigating the
neuronal activity in the human brain in a non-invasive walyisTs a typical electromagnetic inverse prob-
lem which can be addressed in two stages. In the first one acahysd geometrical representation of
the head is used to find the relation between a given sourcelrand the electromagnetic fields generated
by the sources. Then the inverse problem is solved: the sswitmeasured electric scalar potentials or
magnetic fields are estimated by using the forward solufltrus, an accurate andhieient solution of the
forward problem is an essential prerequisite for the sofutif the inverse one. The authors have proposed
the method of fundamental solutions (MFS) as an accuréiiejemt, meshfree, boundary-type and easy-
to-implement alternative to traditional mesh-based matheuch as the boundary element method and the
finite element method, for computing the solution of thgERG forward problem. In this paper, further
investigations about the accuracy of the MFS approximadi@nreported. In particular, the open question
of how to dficiently design a good solution basis is approached with gorighm inspired by the Leave-
One-Out Cross Validation (LOOCYV) strategy. Numerical fesare presented with the aim of validating
the augmented MFS with the state-of-the-art BEM approaobmi®ing results have been obtained.
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1. Introduction

Nowadays, several fierent technologies are available for human brain imagingatémy
of the brain can be investigated by computed tomography @])and magnetic resonance
imaging (MRI) [9], which provide high resolution images. ever, other imaging techniques
are required to obtain information on the brain activity.

This task can be performed with high spatial accuracy, irotlder of a few millimeters, by
means of nuclear imaging methods, such as positron emigsitography (PETjEl], the single
photon emission computed tomography (SPE [25], anduhetional magnetic resonance
imaging (fMRI) [7], which are related to changes of blood flonoxygen transportation in the
brain. The temporal resolution of PET and SPECT is in theroflseconds. fMRI data might
be acquired with a resolution of 100 ms, but properties oftloed flow practically limit the
temporal resolutionto 1 s.

A better temporal resolution can be obtained by using eletdignetic imaging techniques.
In fact, acquisition, processing and transmission of imfation by neurons generate weak electri-
cal currents flowing in the human brain: electroencephalplgy (EEG) and magnetoencephalog-
raphy (MEG) can be used to obtain a better temporal resolpiticthe order of 1 ms, with typ-
ical spatial resolutions in the order of 1 cm. In additione #dectromagnetic techniques are
non-invasive, whereas, in nuclear imaging techniquesgrselimitations are imposed by the
maximum radiation dose that is admissible in order to saadjthe patient.

Electric potential and magnetic field distributions can beasured by means of an array of
electrodes on the scalp, for EEG, or superconducting quaiiterference devices (SQUID),
for MEG, located near the head. EEG can detect activity hothe sulciand at the top of the
corticalgyri, whereas MEG is most sensitive to activity originating ifcsand provides a better
spatial resolution@O]. An inverse problem must be sohe@astimate the neuronal activity
sources corresponding to a set of measured data (electeintf or magnetic fields).

The solution of this inverse problem requires an accuratedd solver. Such a numerical
tool computes the scalp potential aodmagnetic fields generated by a set of current sources
representing the neural activity, given knowledge of bhthgghysical properties of the biological
tissues and the geometry of the head [19]. Thieient solution of the YEEG forward problem
is investigated in this paper.

So far, the MEEG forward problem has been addressed by traditional thaskd numeri-
cal methods|_L_1|9]. Among these methods, the Boundary Eleiettiod (BEM) E’LJZEEG]
is the common choice because of it$ic@ency with respect to the Finite Elements Method
(FEM) @Eé] In particular, the symmetric Galerkin BE®! currently implemented in
widely used software packages foyBEG source analysi39]. However, the BEM involves
costly numerical integration, requires an often nonttivi@shing of the domain boundaries at
high quality and could potentially introduce mesh-relasgtifacts in the reconstructed neural
activation pattern. The forward solver needs to be accaraddast in order to act as affieient
component within an inverse solver.

To this aim, the meshless Method of Fundamental Solution'sé‘()@] has been proposed
by the authorsﬂﬂ 4] for solving the boundary value probl&w®R) which arises in the NMEEG
context. The MFS approximates the solution of the given BYR bnear combination of funda-
mental solutions of the governing PDE. Each of these basigifans which serve as a component
of the linear combination is defined bykarnel centetocated on a fictitious boundary outside
the physical domain. The cfirients of the linear combination are determined by enfagytfire
boundary conditions at a set odllocation pointon the true physical boundary.

2



Author/ Mathematics and Computers in Simulation 00 (201611-15 3

Unlike many other numerical methods, normals to interfacespairwise distances between
points are the only geometric quantities that are needethes®FS is meshfree and, in terms
of computational time, benefits from the elimination of theghing task in the pre-processing
stage. A reduction of CPU time can also be obtained, withaeidp the state-of-the-art Galerkin
BEM, in the process of assembling the system matrix. Thigathge plays an important role
when applying the forward solver within the iterative sauatof the inverse problem. Further
benefits come from the ease of implementation, which makegpuater codes very flexible in
contrast to mesh-based solvers.

This paper investigates strategies to improve the accufatye MFS approximation without
a decrease inficiency. It has already been established that the accurabg ®1FS approxima-
tion does depend on the location of the cenfers [11]: indieeting a practical andficient way
of answering the question of how to pick the centers remaingpen problem in the MFS con-
text. In this paper, we approach the determination of cdatations by using a strategy inspired
by the leave-one-out cross validation (LOOCYV) algorithnhjet originates in the statistics lit-
erature[&B] and which has been successfully applied aldeiMFS contexﬂ_L_1|0].

The paper is organized as follows. In Section 2 the stateeofithof the MEEG forward
solution is summarized. In Section 3 the MFS solver for th&EG context is discussed. The
LOOCV-like approach is presented in Section 4. In Sectiamubyerical results are analyzed for
a realistic single-shell head geometry, by addressing nicai@ccuracy, convergence and com-
putational load comparing them with a state-of-the-are@ah BEM solver. A brief conclusion
completes the paper.

2. Stateof theart of the M/EEG forward solution

Grid based numerical methods (FEM, BEM) are usually adoiptedlving PDESs that model
problems in engineering and science. These methods arelF#ted on the discretization of the
whole problem domain (FEM), using a mesh to support the lappfoximation. For problems
in complicated geometries, the mesh generation is a timstguing and costly process, even
when automatic algorithms are used.

Wherever possible, boundary-type methods which requitg @rboundary discretization,
may be preferred. Hence, BEM has been widely used, even Hytintroduce drawbacks in the
mathematical formulation of the problem and in the numéiigagration of singular functions.
Even without the need to discretize a 3D volume, the mesHiB®asurfaces is still a non-trivial
task.

In the last decades, meshfree methods have been proposegiet in many fieldslI‘M].
Meshfree methods allow for the numerical solution of PDEthauit a predefined problem do-
main mesh: the approximation is performed only by nodesdhadistributed in the problem
domain, without any underlying connection between themoAgithese methods, kernel-based
collocation methodﬂiS] have recently received greantia.

The main idea of kernel-based approximation methods igitmate the solution of the given
BVP by means of a linear combination of so-callenelfunctions, which are defined using a
set of points namedenters The diferential equation and the boundary conditions are enforced
at a discrete set of points nameallocation points

So far, traditional mesh-based methods, such as 4@,] and BEMlﬁﬂl,
,], have been implemented to address the EEG forwatilggnoin domains generated by
realistic head models$ [19]. Even though FEM can handle thst mealistic head models, the
BEM has become the method of choice for many practical apiitics.
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The success of the BEM in EG forward solving is mainly due to its nature as a boundary-
type method: not only does it avoid cumbersome and compuiaty expensive pre-processing
3D mesh generation, but it also has low computational cogwdompared to the FEM for a
given head model and desired numerical accuracy [1], sinoeguires computation only on
the boundaries. Currently, the symmetric Galerkin BEM josgal in ] can be considered
the state-of-the-art method for solving the/BBEG forward problem. This method is imple-
mented in the OpenMEEG library, which has been adopted bpwsawidely used software
packageslﬁﬁg]. In the symmetric Galerkin BEM approacih Ithe electric scalar potential
and its normal derivative on the interfaces are unknowneairand constant functions are used
to approximate the potential and its normal derivative am itiierfaces, respectively, and the
residual minimization is carried out by a mixed integralaggeh, i.e., by using constant weights
for the potential and linear weights for its normal derivati

The dificulties in handling the geometric complexity of biologisaluctures motivated the
recent incorporation of meshfree methods iyfHEG research. Ir[41], the finite points mixed
method (FPMM) is proposed as a meshfree method for solve&EG forward problem. ||Et2,
B], the smoothed particle hydrodynamics (SPH) method nefilated to be applied to the MEG
forward problem. However, these methods require compurtatinodes distributed in the entire
domain; therefore, though they avoid both the mesh geeratep in pre-processing and costly
numerical integration in assembling the system matrix, B&Wers may outperform them in a
computational cost per accuracy compariﬁ] [41].

3. MFS modeling of brain activity

In order to solve the MEG problem, posed as a set of coupledsBgPthe 3D Laplace
operator, a head model consisting of nested regions wittepise-constant conductivity is for-
mulated. Let be the number of nested regions in the dontaithat represents the hedd; be
the generic region with outer (toward the air outside theypddundarydQ, and conductivity
oy, and letly .1 = 0Q, N 0Q,1 be the interface between the regiband the regiod + 1. The
regionQ, ,; surrounding the head corresponds to the ambient air whiohbeunded and has
negligible conductivity.

The problem can be formulated as the following set of BVPgtaxliby interface conditions:

a¢V%pe(p) = Se(p) peQ
#c(P) = ¢e+1(pP) peleertles €=1,...,L 1)
on(p) - Voe(p) = oean(p) - Vori1(p) P € leenn

wheregy is the electric scalar potential in tlieh region,n(p) denotes the outward unit normal
vector to the interfack (.1 atp and the source teri®,(p) can be expressed as follows:

V-(Qé(p—p’)) sourceap’ € Q
0 otherwise.

Su(p) = { 2)

The quantityQé(p — p’) is the source current density modeling a single neuralcsgdor the
sake of simplicity. It can be viewed as a current dipole of reat@ located atp’ € Q. By

applying the superposition principle, the general case afyrdipoles can be straightforwardly
addressed.
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Figure 1. Three regions (brain, skull and scalp) head model.

In considering a certain region independently, it is cléat the governing PDE is a Poisson
equation if a neural source is located in that region or ad@pkquation otherwise. A model
with three nested regions (brain, skull and scalp) is comfoothe EEG problem (Figurig 1).
However, other regions could be added to improve the modbkdiead, e.g., cerebrospinal fluid
andor distinct regions for gray and white matter. Anyway, a hgereous model of the high-
conductivity brain compartment is ficient to solve the MEG forward probleﬂﬂdﬂ 38]. The
authors have proposed the Method of Fundamental SolutiRS) [34] for solving the VEEG
forward problem. The MFS has been applied to various phlysicdlems and its simplicity and
ease of implementation make the method itself quite popular

The MFS is a kernel-based boundary-type method which capleed when a fundamental
solution of the PDE is known. The MFS method gives the sofutiof the given homogeneous
BVP by a linear combination diindamental solutions f the governing homogeneous PDE,
ie.,

up) = > ciK(p.£), peQ, (3)
§j€E
where: 1
K(p.§)) = m (4)

is the fundamental solution of the Laplace operatorﬁn:d(fj)’j\‘:1 is a set ofcenterdocated on
afictitious boundaryutside the physical domaf®in order to avoid the singularities &f in the
representation of the solution. The @daents of the combination are determined by enforcing
it to satisfy the boundary conditions HE 4] by means of aaumdtion procedure at a sBtof
collocation points

In applying the MFS, a fictitious boundary location stratégg to be considered. A natural
choice is to conveniently inflgtéeflate the physical boundary with respect to its centﬂiIS
The standard MFS formulation coupled with this simple h&tidimethod for the placement of
the fictitious boundaries provides an acceptable accuradg waintaining a low computational
cost. This is a relevant task in integrating the forward eplato the inverse problem context to
determine the dipole sources location.

The governing PDE of the fEEG forward problem in the regichmay be homogeneous or
inhomogeneous depending on the absence or the presencewtdsource in the region. While
MFS can be applied directly in the former case, in the latsean inhomogeneous problem can
be reduced to a homogeneous one by the method of particllitioeg MPS), i.e., by considering
the solutionu as the sum of a particular solutiop and its associated homogeneous solutign
ie.,

U = Un + Up. (5)
5
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Then one gets the following homogeneous BVPUar

{Luh(p) = f%(p) - Lup(p) =0, peQ, )

Tun(p) = F%(p) = Tup(p). P €0Q,

wherelL is an elliptic diterential operatofQ is the boundary of the domasd, andT and f?? are
the operator and the function that define the boundary conditrespectively. Therefore, uf,
is known,u can be estimated by approximating the ternvia the MFS by usingvl collocation
points and\N centers, withM > N [é} ; the caseM = N is also standard for MFS metho@[lS],
but we restrict to thv > N case here to build on the format set forthlih [4] and help ensur
greater stabilityiE?].

The collocation, enforced on each interface, generatesendetermined linear systeft =
b which is solved in the least squares sense. To this aim,Rset of collocation points on the
interfacel, .1 and a set of centefs, are considered. In particular, for a head model with three
nested compartmentk & 3), we get

) AQ
A(lg A(lég c® b1 2
A= A AR c=|c®|, b=|bag|, @)
A% c® D34

where the superscripts are directly related to the intedgeq.[1). In[{7), the blocks of the
matrix A collect the continuity of the electric scalar potential @he normal component of the
current density imposed at the collocation points which @fento asp. € PP, . andp € PY

. l+1 ,0+1
respectively,
A® = Dita €=1,2;s=(,0+1 8
(RSB INIC) =Las=6E+4 (8)
(+1
with
(D%?%ﬂ L= (CD¥K(p; €) P € Py & € Er,
S —_
(N7 2ij = (-1 on(py) - VK(pi,€5) pi€ P£’>‘,€+l’ & € B,
and the last block comprised of only the values
(Aéfi)i,i = o3n(p) - VK(pi.€))  pi € Py, € € Ea.
The blocks of the known vector are
bD
breca = [ N t=12, )
' bres1
with
(bR 1)i = @a1dp.eea(Pr) — acdp.e(p) pi € PPpas

(b)) = @er1004an(P) - Véprra (D) — @coen(p) - Vépe() P € Py,
and, on the external interface,
~N
(b3)i = —azoan(p) - Vopa(p),  p; € Py,
6
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In the previous formulas the subscripof the electric scalar potential refers to the particular
solution (eq[b), and the following position holds (Figie 1

1, neural source i,
(= (10)

0, otherwise

An analogous procedure has been proposed for solving the feEard problem both in the
FEM [E,] and in some meshfree context! [Ell, 2].

Once the scalar electric potential distribution is obtdjrtee forward problem for the mag-
netic flux density can be evaluated. In fact, the magnetic dlemsityB at a pointp outside
Q can be determined by means of the Ampére-Laplace-Bio&a$taw and a corollary of the
Divergence Theorerﬁh (0]

L -
M pP-p
B(p) =B + — 1= In(p*) x ————=ds, 11
(P) =Bs(p) + ;:l(o'e 1-0¢) o $(p*) n(p") TEYE (11)
whereBg(p) is an analytical term:
U p—p
B = X —————. 12
S(p) 471’Q ”p _ p,”3 ( )

So the crucial point is tof@ciently evaluate the scalar electric potential distriboti

4. Augmented M FS approach

Despite the simplicity and easy implementation of the MRSré¢ are some important issues
of the method which have not yet been satisfactorily adekss particular, as already pointed
out, the accuracy of the MFS approximation depends on ttaitotof the centers, and picking
the centers in gracticalandefficientway is still an open problem. For example, in the scientific
literature [10] it has been emphasized that the stabilitghef MFS in an analytic domain is
controlled by the singularities in the analytic continoatiof the solution. However, for non-
analytic boundary or data, and in coupled settings (e fEBG problems), there is still no way
to determine the location of the singularities in the analgontinuation of the solution. In this
paper we address this issue, namely how to choose the Inaitihe sources in a satisfactory
way, though perhaps not an optimal one, in order to obtaimaunged results when the MFS is
applied to MEEG problems.

In the scientific literature two approaches are proposeae. first one is a dynamic one: the
center coordinates are determined along with thefmients of the MFS expansion by costly
nonlinear least-squares solvelrs! [, 23]. Alternativelythe static approach, the centers are
pre-assigned by, e.g., inflatifigflating the physical interfagd®undaries or projecting the col-
location points along the surface normals. These normatt breiapproximated, which we did
using the raw mesh; this could be improved using a higheritguabproximation to the sur-
face from the point cloud datﬂ34]. In a two-dimensional @m uniform distribution of the
collocation points around the boundary and the placemetttekernel centers on a pseudo-
boundary congruent to the physical boundary produces tret anzurate and stable results. In
a three-dimensional domain, the uniform distribution @& tollocation points on the surface of
an irregular region is not a trivial task; three-dimensi@pplications often produce collocation
points by scanning the surface of the objéct [27].

7
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Static strategies are computationally advantageous,hieutoication of the centers is con-
trolled by one or more parameters, such as an inflateftation coéicient or a distance from
the physical interface, which must be determined. In th@bfam we consider a single infla-
tion/deflation coéficientn as a free parameter which defines the degree to which the aatua
face is deformed into the fictitious boundary on which thenkécenters (also called the source
points in MFS literature) lie. If; is a generic collocation point on the physical surface, the
corresponding centet on the fictitious surface is given by:

& =pi +m(p;). (13)

Figure[2 provides some insight regarding the role the paimenas in defining the collo-
cation point and kernel center distribution.

Figure 2. This computational setting involvés collocation points ), at which the PDE is enforced, located on the
brain surface.N source points (the MFS kernel centes¥,are placed on a fictitious boundary (dashed line) outside of
the domainQ. The fictitious boundary is defined by a paramegetarger values of; yield a greater “inflation” of the
brain surface, whereas smaller valueg; pilace the kernel centet closer to the surface (and, thus, potentially closer to
the collocation poinp;).

The following sections define two possible metri€spo andCgcy, Which measure, in some
way, the quality of the solution for a givepparameter. Prior to conducting the MFS solve to
determine the numerical solution {d (1), thevhich minimizes one of these quantities should
be found (through a standard numerical optimization methah as BFGSJBO]) and used to
generate the solution basis for the MFS approximation t@tbetric scalar potential.

4.1. Leave one out cross validation

A strategy for finding a “satisfactory” parametgis to use aross validation approaciwhich
originated in the statistics literature. In particulag feave one out cross validation (LOOCV)
algorithm was proposed iﬂBS] for optimizing the shape r of radial basis function (RBF)
interpolation systems; later, it was used as an inspirahiﬁ]ﬂ:i solving elliptic BVPs by RBF
methods. In[[10] the same LOOCV-like algorithm is used inaging the location of the sources
(i.e., the centers) in the MFS context.

We modify this idea here to select the parametéy minimizing the (least squares) error
for a fit to the (boundary) data based on an MFS expansion fichadne of the centers was
“left out”. To judge the quality of the solution as a contrilaun of that source center, we will

8
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also “leave out” the corresponding collocation point froifmeh that center was inflatédkeflated.
In reality, any choice of omitted collocation points is Mialincluding omitting more than one
collocation point per term, or potentially no collocatiooifts), but this strategy, of omitting a
center and matching collocation point, is chosen to pdithléestandard LOOCYV strategy where
those points actually coincide.

In contrast to the standard setting detailedlin [10], howewer collocation matrix is no
longer square, and thus has no inverse. Here we will workutiinahe comparable derivation
and identify the new aspects of this situation.

Suppose that we have the full MFS solution,

N
up) = Y cK(p.£).  peq. &€= (14)
=1

in the region for which we have boundary data and want to deter an appropriatg inflation
parameter with which to define th# locations. There arél centerss; and M collocation
locationsp;, but because every point on the fictitious boundary is indfdeflated from a point
on the true boundary, we can suitably order the points so that

&; is the inflated point associated wipk, 1<i<N

This defines a relationship between all of the kernel cematedsa subset of the collocation points.
The order of the remaining collocation poirgg, s, . - -, Py iS immaterial.

The strategy behind LOOCYV is that a collocation point for efhive have boundary data is
intentionally omitted from the solutiofi(lL4), and the embthe resulting solution, as computed
without that data, at that collocation point is a measurdgraehow wrong the choice af is for
that point. Accumulating these residuals at all colloaapointsp; with corresponding centers
& (each approximation omits bogh andp,), gives a metric which judges the inappropriateness
of a given choice of;. Minimizing this metric gives, in a sense, the optimal clecié .

For each collocation point which is “left out”, we have an@sated permutation of the full
least squares system,

K(ps.&1) -+ K(p.én)

K= : , (15)

Kpm-€1) -+ K(pw.€n)

isolating the points that will be used to create the appratiom (called the training set) and the
point at which the residual will be computed (called the dafion set). This partitionk into

blocks,
Kit Ky
K= s
(Kvt Kw,

whereK;; € RM-DXN-1 ke RM-Ix1 k. e RN-1 gndK,, € R.

In practical termsKy represents the collocation matrix for fitting only the tiagnset and
Kyt represents the solution basis for evaluation at the vadidginints—the notatiok, is meant
to bolster this intuition of basis function for evaluation the \alidation set and centered on the
training set. This follows the same notation as appearéEuh Lt here the matrix is rectangular,
which poses new dliculties. If we similarly partition our least square systeoefficient c and
boundary datd as

(16)

c:(g), ceRN, b:(&), beRM, 17)
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the full approximation problem (leaving nothing out) is

e = (i E-R)

Because the goal of leave one out cross validation is tom@terthe éectiveness of solution
parameters (such as the fictitious boundary paramgtare use the predictions on the validation
set generated by solving the problem on the training setfioala residual denoteg;. If only
the training set is considered, the overdetermined lingstemK € = b; defines the caécients
¢ for prediction on the validation set; those predictionst#ie formK,C. We can therefore
define the residual at the validation point as

e = by — KuKgh, (19)

whereK}; represents the pseudoinve [18Kaf This residual represents the accuracy for a
single validation paip;, &;; it is then necessary to cycle through and give all poghts = an
opportunity to contribute as a validation point, so mu#tiplich residuals are combined as

Cloo = Z & (20)

each validation point

to form the metricC_ oo we hope to minimize.

Simple though that may be to state, the cost of uding (19) dohoint left out becomes
prohibitive, since each point should, in theory, requirkisg a least squares problem involving
anM — 1 x N — 1 sizedKy. For a square systenlﬂ35] demonstrated that terms apgearir!
can be reused to compute each LOOCV component residualatyyieo additional cost. In our
current rectangular setting, we instead have the pseuvele8 = K*, which must satisfy

Gt Gut)|(Ki Ku IN-1
= 21
(Gw GW) (Kvt KW) ( 1) (21)
so long asK has full column rank (a prerequisite for a giverto be suitable). This identity

provides
GuKit + GuKyt = 0 = KuKg = —GyiGuKyK:. (22)

which can be substituted back infa119) to give a slightfjiedtent form of the residual,
e = by + Gy GuKiKii br. (23)

At this point, the distinction from the standard squ&rease is most obvious: in that setting,
K+ = K1 leavingKyK;; = In_1. In the standard leave one out cross validation settingribest
in, e.g., EB], it is possible to reduce the cost of compu(Eg) by manipulating

G\ i [Gu Gwu)(b _
(Cv) =K'b= (Gtv va) (bv) = Oy = Gwb + Gwhby
to produce the identity

GGy = by + Gy Gyb. (24)

10



Author/Mathematics and Computers in Simulation 00 (2016)1-15 11

These manipulations, applied to the true inverse instedtieopseudoinverse, is what allows
LOOCV to maintain a reasonable cost in the square setting.

We argue that the same computation can be used in this lesstescsetting under reasonable
conditions. In particular, we note thiK{ b is a projection oty into rangeKy). Thus, we can
write (In-1—KuK{) by = &, thatis,d is the projection oby into rangeK)*. If we think about these
components in terms of the approximation problem we aragrio solveKK;; b; represents the
component oft; which is well represented by the Green’s kernel basis @mepresents the
component which cannot béectively approximated. From this standpoint,

KK b = by — 6, (25)
and therefore

et = by + Gy Gy - GyGwd
= G;\/lcv - G\jletv(S' (26)

If we believe that our MFS method idtectively approximating the boundary data, then dhe

term should be small (since there should be very little atfoeiiata which is left unaccounted)
and could be discarded during the computation. The judgmieotit how small is appropriate

would have to be determined by the practitioner, but a goowgate for the magnitude of each
of these LOOCVS terms is the residual of the fukc = b least squares problem, since the
difference between the two is only a single point.

4.2. Generalized cross validation

In case the LOOCV-like formuld (26) discussed above prowtesaisible because tlieterm
was unacceptably large to approximate as 0, it is possit#engloy ageneralized cross valida-
tion (GCV) criterion |I|7]. The GCV criterion uses the projentmatrix

P=ly-KKK™KT (27)
which, after some manipulations, can be expressed in tefthe @seudoinverse as
P = Iy — KK*. (28)

Note the similarity to the projection matrix that appearethie LOOCYV setting when attempting
to approximate each LOOCYV residual. For the generalizedscvalidation, no data is left out
and the projection matrix is used to invoke the full residonalnoting thatPb = b — Kc so
thatb'P2b = ||b — Kc||§. The generalized cross validation criterion is definedgifiiis as (see

[6,[15,[33])

Caev = b'P?b (29)

(traceP)?’

Again, for the purposes of choosing the parameteve reject any; values for whickK does not
have full column rank.
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Figure 3. Spherical domain - (a) cost function and (b) erroth® electric scalar potential, both as a function ofithe
parameter, for dierent values oRyrs.

5. Numerical results

We approach the MEEG forward problem by considering both a spherical domaih @
realistic (one compartment) head model. FieIdTm [32jdétfanatomy is used in the realistic
simulation and interfaces are extracted from T1-weight&d vhages by segmentation and then
smoothed. The numerical computations were carried out onr&station equipped with a six
core Intel Xeon E5-2630@2.3 GHz and 24 GB of RAM. For the sighémodel, the reference
is the analytical solution and the domain has a radius of 0.Tne benchmark for the realistic
geometry is a symmetric Galerkin BEE[26].

The number of unknowns both for MFS and BEM system.isThe centers are located by
a procedure of inflation of the physical inner skull surfestayting from the collocation points,
randomly chosen on the inner skull surface. We take therdistaof the centers from the inner
skull surface as a free parameter: the LOOCV-like proceguogides a criterion[{20) which
we minimize, using the MrLas functionfminbnd, to empirically choose in an optimal way.
Bounds for the parametgrare 1 (lower), 5 (upper).

We evaluate the electric scalar potential on the inner siurfiace for both the spherical and
the realistic homogeneous compartment model of the hegg(= 0.2 §m), due to a unitary
current dipole that is placed at a realistic deptHl(cm from the inner skull surface). By defining
the ratio between the unknowns and the collocation poRyjss, in Figure[3 we report the error
on the electric scalar potential as a function of thparameter, for dierent values oRyes
andN = 5000. In the same figure, we show also the behavior of the oostibn for varying
n parameter. In Figurigl 3, it appears that the LOOCV-like costfions predicts theptimaln
value quite accurately. The location of the minimum of theQ@©V-like error and RMS error are
quite similar. The results improve whé = N, i.e. the MFS matrix is not totall andskinny

In the realistic setting, a BEM reference solution is coasd by referring to a fine mesh
such thatN is equal to 4500. In Tablgl 1 a performance comparison among, WHS with
the LOOCV-like strategy and BEM for the potential problenpisvided. In this case, for both

12
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Table 1. Performance comparison among MFS, MFS with LOG&/dnd BEM for the scalar potential problem, in the
realistic setting. A BEM reference solution is considerethw = 4500.

N MFS MFSLOOCV-like BEM
Rel. diff. CPUtime[s] Red.diff. CPUtime[s] Rd. diff. CPU time[s]
600 2.6282e-01 3.9616e-01 1.8091e-01 2.2¥@G3e 3.0873e-01 1.013561
993 1.5016e-01 5.9742e-01 1.2030e-01 7.5200e 1.6552e-01 1.662761
1643 6.2979e-02 2.108880 5.4633e—02 1.829361 9.0817e-02 4.021261
2719 6.7595e-02 9.101¥@0 4.8583e-02 3.680181 6.4571e-02 1.036662
4500 6.6277e—02 3.7396@1 4.4742e-02 2.401662 NA 2.8483e-02

. -

Figure 4. Electric scalar potential map: BEM (left-side)F$with LOOCYV procedure (rigth-side).

MFS approaches, we considerBgrs = 0.8. Relative dferences in 2-norm with respect to
the BEM reference solution and CPU times are reported fofingiN. It can be observed that
the LOOCV-like procedure allows for an improvement in temficcuracy. In fact, solutions
obtained by means of the proposed strategy are slightly morarate than the ones obtained
with the standard approach; the CPU times are higher butehéecs are automatically and
reliably selected by means of the LOOCV-like procedure. éfheless, the proposed approach
is competitive with the BEM approach, not just from the aecyrstandpoint but also when CPU
times are concerned.

In Figure[4, the electric scalar potential distributiongaied with BEM and MFS with
LOOCV-like procedure, are also reported for the previoasgcribed realistic head example at
the finest discretization.

6. Conclusion

The MFS is an attractive method for solving th¢BEG forward problem. It avoids complex
and time consuming meshing algorithms as well as troublesamad costly numerical integra-
tion routines, without sacrificing accuracy. Results fa éhectric potential problem (EEG) in a
realistic geometry confirmed a very good agreement with BEMrence solutions and a com-
petitive numerical performance. As a challenging new tagkhave presented a first application
of an LOOCV-like strategy, for automatically determinimgtcenter locations and have obtained
promising results in doing so. Future work could involgatently optimizing the LOOCYV cri-
teria as suggested iﬂ29], which would be especially usgduing the inverse problem solve
when diferent inflatioriddeflation parameters could provide better accuracy duide éorward
solve. It may also be beneficial to experiment with choodirggrtumber of source terms as part
of the LOOCYV process.

13
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