
SPARSE MATRIX-MATRIX PRODUCTS EXECUTED THROUGH
COLORING

MICHAEL MCCOURT ∗, BARRY SMITH ∗, AND HONG ZHANG ∗

Abstract. Sparse matrix-matrix products appear in multigrid solvers among other applications.
Some implementations of these products require the inner product of two sparse vectors. In this
paper, we propose a new algorithm for computing sparse matrix-matrix products by exploiting their
nonzero structure through the process of graph coloring. We prove the validity of this technique
in general and demonstrate its viability for examples including multigrid methods used to solve
boundary value problems as well as matrix products appearing in unstructured applications.

Key words. sparse matrix product, coloring

AMS subject classifications. 65F50, 65F30

1. Introduction. Matrix-matrix multiplication is a fundamental linear algebra
operation [10]. The operation of concern in this work is

C = ABT ,

which arises in algebraic multigrid. This operation is well defined when A ∈ Rm×r and
B ∈ Rn×r and produces C ∈ Rm×n. Our results are equally applicable to complex-
valued matrices, but we omit that discussion for simplicity.

The multiplication operation is defined such that the jth column of the ith row
of C (denoted as C(i, j)) is calculated as

C(i, j) =
r∑

k=1

A(i, k)BT (k, j).

This can also be written as the inner product of the ith row of A, denoted as A(i, :),
and the jth column of BT , denoted as BT (:, j):

C(i, j) = A(i, :)BT (:, j). (1.1)

Several mechanisms exist for computing the matrix-matrix product, each of which
is preferable in certain settings. For instance, C can be constructed all at once with
a sum of r outer products (rank-1 matrices),

C =

r∑
k=1

A(:, k)BT (k, :). (1.2)

For an approach between using (1.1) to compute one value at a time and using (1.2)
to compute C all at once, we can compute one row or column at a time or compute
blocks of C using blocks of A and BT .

While these techniques all yield the same result, they may not be equally prefer-
able for actual computation because of the different forms in which a matrix may be
stored. Many sparse matrix algorithms have memory access outpace floating-point
operations as the computational bottleneck; this has arisen in uniprocessor settings

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
Emails: (mccomic, bsmith, hzhang)@mcs.anl.gov

1

[20], parallel algorithms [4] and in developing tools for GPU computation [6]. In this
paper, we begin with conventional matrix storage: compressed sparse row format
(CSR) for sparse matrices and Fortran-style column-major array storage for dense
matrices [3] and then transform the storage format to improve efficiency. A matrix
A ∈ Rm×n stored in CSR format requires only 2nnz + m storage, where nnz is the
number of nonzeros in A; accessing consecutive values in a row of a CSR matrix is
very efficient, whereas accessing consecutive values in a column is not. As a result,
algorithms which most efficiently use CSR matrices involve entire rows of the matrix
to maximize the amount of computation before another call to memory must occur.

One approach to computing ABT would be to compute BT from B and store it
as a CSR matrix, but this reorganization requires a significant amount of memory
traffic. The availability of the columns of BT would seem to indicate that the inner
product computation (1.1) is the preferred method; however, computing the inner
product of sparse vectors can be inefficient operation (see Section 1.1 or [11]). Our
goal is to produce a data structure and algorithm which efficiently computes the sparse
matrix-matrix product C = ABT using inner products.

In the rest of this section we introduce sparse inner products and matrix coloring.
In Section 2 we analyze matrix coloring applied to the sparse matrix product C = ABT ,
which allows us to instead compute C by evaluating the inner product of sparse and
dense vectors. In Section 3 we propose algorithms for computing matrix products with
matrix colorings and consider some practical implementation issues. Numerical results
are presented in Section 4, where some favorable results in comparison to other matrix
multiplication strategies. These experiments are conducted on the matrix products
appearing in multigrid solvers for three dimensional PDEs from PFLOTRAN [15],
from the PETSc library distribution [3], RBF network [18] and the University Florida
the University of Florida Sparse Matrix Collection [7]. We conclude the paper in
Section 5 with a brief discussion of future work.

1.1. Sparse inner products. When matrices A and B are stored in compressed
sparse row format, computing C = ABT requires the inner product between sparse
vectors; this section discusses the potential inefficiency of sparse inner products. Al-
gorithm 1 shows how inner products between sparse vectors in Rn may be computed.

Algorithm 1 Sparse-Sparse Inner Product of x,y ∈ Rn; x,y have nx, ny nonzeros,
respectively.

1: i = 1; j = 1; xTy = 0.0
2: while (i ≤ nx and j ≤ ny) do
3: if (index(x, i) < index(y, j)) { i = i+ 1; }
4: else if (index(x, i) > index(y, j)) { j = j + 1; }
5: else { xTy = xTy + x(index(x, i))y(index(y, j)); i = i+ 1; j = j + 1;}
6: end while

Because x and y are stored in compressed form, only the nx and ny nonzero values
in each vector respectively are stored, along with the rows to which they belong. The
function “index” accepts a vector x and an integer 1 ≤ i ≤ nx and returns the index
of the ith nonzero; the ith nonzero is then accessed as x(index(x, i)).

Algorithm 1 iterates through the nonzero entries in each vector until finding the
collisions between their indices (indices where x(index(x, i))y(index(y, j)) ̸= 0); each
collision is then accumulated to evaluate the inner product. While the number of
floating-point operations (flops) for this algorithm is only proportional to the number

2

of collisions between nonzeros, the required memory access is inefficient. The indices
of both vectors must be traversed completely, requiring O(nx + ny) memory accesses
in a while-loop.

This poor ratio of computation to memory access is one motivation behind our
work. Contrast Algorithm 1 with the inner product of a sparse and dense vector in
Algorithm 2.

Algorithm 2 Sparse-Dense Inner Product of x,y ∈ Rn; x has nx nonzeros and y is
dense.

1: xTy = 0.0
2: for (i = 1, . . . , nx) do
3: xTy = xTy + x(index(x, i))y(index(x, i))
4: end for

Algorithm 2 performs O(nx) flops, because even if some of the values in y are
zero, they are all treated as nonzeros. This is greater than the sparse-sparse inner
product but with roughly the same level of memory accesses: O(2nx) in a for-loop.
Essentially, a sparse-dense inner product would do more flops per memory access. Our
interest is not in this small trade-off but in compressing multiple sparse vectors into a
single, dense vector; this significantly increases the ratio of flops to memory accesses,
without (we hope) introducing a harrowing number of zero-valued nonzeros into the
computation. If this can be done effectively, then the inefficient sparse-sparse inner
products used to compute sparse matrix products can be replaced with a reduced
number of more efficient sparse-dense inner products. Our mechanism for doing this
is described in Section 1.2.

1.2. Matrix coloring. Matrix coloring is related to graph coloring, an impor-
tant topic in graph theory [14]. The original use of graph coloring in matrices was
in approximating the Jacobian of a nonlinear system using fewer function evaluations
by exploiting sparsity [5]; a more comprehensive paper explaining the role of graph
coloring for Jacobians is [9]. We are not interested in a graph-theoretic understanding,
only in the specific use of graph theory to color matrices, so we introduce only terms
specifically relevant to our usage.

Definition 1.1. Let u,v ∈ Rn. The vectors u and v are structurally orthogonal
if |u|T |v| = 0, where |u| is the vector of the absolute value of all the elements of u. A
set of vectors {u1, ...,un} is called structurally orthogonal if ui and uj are structurally
orthogonal for 1 ≤ i, j ≤ n.

Under this definition, not all orthogonal vectors are structurally orthogonal; for
example,

u =

(
1
1

)
, v =

(
1
−1

)
,

so uTv = 0 but |u|T |v| = 2. Also, all vectors are structurally orthogonal to a vector
of all zeros.

Lemma 1.2. Let u,v ∈ Rn be structurally orthogonal, and denote u(k) as the
kth element in u. Then for 1 ≤ k ≤ n, either u(k) = 0 or v(k) = 0, or both.

Proof. The proof follows trivially from the definition.
Definition 1.3. Let C ∈ Rm×n. An orthogonal set is a set of q indices ℓ =

{ℓ1, ℓ2, . . . , ℓq} for which C(:, ℓi) and C(:, ℓj) are structurally orthogonal when 1 ≤
3

i, j ≤ q and i ̸= j. We also define a set containing only one index ℓ = {ℓ1} to be an
orthogonal set.

Definition 1.4. Let C ∈ Rm×n. A matrix coloring c = {ℓ1, ℓ2, . . . , ℓp} is a
collection of index sets such that, for 1 ≤ k ≤ n, the index k appears in exactly one
index set. We say that c is a valid matrix coloring of C if each index set in c is an
orthogonal set of C. We refer to an orthogonal set that is part of a coloring as a
color.

Because we require 1 ≤ k ≤ n to appear in exactly one orthogonal set, every
column of C appears in exactly one color. Each orthogonal set in the coloring contains
a set of indices corresponding to columns of C which are structurally orthogonal. The
term coloring mimics the graph coloring concept of grouping nonadjacent vertices
using the same color; here we are grouping structurally orthogonal columns of a
matrix using the same orthogonal set.

Recall that we allow for the possibility of there being only one column in a color;
for instance, a column with no zero values in it must exist in its own color. This in
turn guarantees that every matrix has a coloring, since every matrix C ∈ Rm×n must
have at least the trivial coloring {{1}, {2}, . . . , {n}}. If the matrix C were totally
dense, with no structural zeros at all, this would be the only coloring. Our focus,
however, is on the coloring of very sparse matrices.

A matrix may have more than one valid coloring; the 2× 2 identity

I2 =

(
1 0
0 1

)
has two colorings: c1 = {{1, 2}} and c2 = {{1}, {2}}. We are not concerned with
how the coloring of a matrix is determined but rather how we can use it to efficiently
compute matrix-matrix products. Therefore, we refer readers to [9] for an introduction
to how colorings are found.

Definition 1.5. Let C ∈ Rm×n and c = {ℓ1, . . . , ℓp} be a valid matrix coloring
for C. Applying the coloring c to C produces a matrix CDense that is at least as dense
as the matrix C. If c has p colors in it, the matrix CDense ∈ Rm×p. The kth column
of the matrix CDense is created by combining the columns of C from the orthogonal
set ℓk = {ℓ1k, . . . , ℓ

qk
k }. Specifically,

CDense(j, k) =

{
C(j, ℓrk), if C(j, ℓrk) ̸= 0,

0, if
∑qk

i=1 |C(j, ℓik)| = 0,

for 1 ≤ j ≤ m. The matrix resulting from applying the coloring is referred to as a
compressed matrix.

We note that it is also possible to define CDense = CD for a sparse matrix D ∈
Rm×p such that all nonzeros satisfy D(j, k) = 1 if j ∈ ℓk. Such a definition is more
compact, but the definition above is useful for the proofs in this article.

Theorem 1.6. Let C ∈ Rm×n and c = {ℓ1, . . . , ℓp} be a valid matrix coloring for
C. The matrix CDense created by applying c to C is unique.

Proof. See appendix.
Traditionally, matrix colorings have been used for the accelerated computation

of finite-difference Jacobians for the purpose of preconditioning nonlinear solvers [5,
9]. In that setting, structurally orthogonal columns were grouped together to allow
for simultaneous function evaluation. This minimizes the number of function calls
required to approximate the Jacobian without ignoring any nonzero values. We use
this same concept in Section 2 to accelerate the operation C = ABT .

4

2. Analysis of Coloring for Sparse Matrix-Matrix Products. Our goal
in this section is to exploit the graph coloring concept, described in Section 1.2, to
more efficiently compute inner products in a sparse-sparse matrix product. We are
interested in the two expressions

C = ABT or (2.1a)

C = RART , (2.1b)

where matrices A,B,R are stored in CSR format and are not necessarily square. We
analyze only (2.1a) in this section because (2.1b) can be described by using this
product.

The sparse-sparse matrix product (2.1a) can be computed with an analagous
sparse-dense matrix product; doing so reduces memory access overhead and improves
computational efficiency. To achieve this improved performance, we restructure the
sparse matrix BT into a dense matrix BT

Dense using the matrix coloring ideas intro-
duced in Section 1.2. This allows us to compute

CDense = ABT
Dense, (2.2)

such that the nonzero entries in CDense are also the nonzero entries needed to form
C. After computing (2.2), CDense must be reorganized into C, which is done by using
a process similar to the compression of BT into BT

Dense. Since this is not fundamental
to the analysis, this process is discussed in Section 3.1.

We must ask the question: How can we form a dense BT
Dense such that CDense

and C have the same nonzero values? Our approach uses a coloring of the matrix C
to determine which columns of C are structurally orthogonal and can be computed
simultaneously. This allows for the compression of those multiple columns associated
with each color of BT into a single column of BT

Dense. After CDense has been computed,
this single dense column is decompressed to fill all the columns of C corresponding to
the columns of BT , which were earlier compressed to created BT

Dense.
Although the dense matrix CDense contains the same nonzero values as C, the

dense matrix, BT
Dense need not contain all the nonzero values of BT . This special case

may occur when A has columns with only zero values, but we prove in Corollary 2.7
that whenever A has no zero columns, any coloring of C is a valid coloring for BT .

2.1. Motivating Example. We consider a small example to demonstrate the
coloring concept before we study its validity in general sparse-sparse matrix products.
Consider the product of two “sparse” matrices,

1 6 3 12

4 12
1 2 3 36

12 28 15 24
20 66

36

︸ ︷︷ ︸

C

=

1 2

2
1 6

3 4
5 6

6

︸ ︷︷ ︸

A

1 2 3

2 6
4 5

3 4 6
4 6

6

︸ ︷︷ ︸

BT

.

The structure of C admits the coloring

c = {ℓ1, ℓ2, ℓ3, ℓ4} = {{1, 4}, {2, 5}, {3}, {6}}

5

because columns 1 and 4 are structurally orthogonal, as are columns 2 and 5. Notice
that despite the structural orthogonality of the third and fifth columns of BT , those
columns cannot be combined in the same color in C. Using the coloring c, we can
compress BT into BT

Dense and compute CDense,
1 6 3 12

4 12
1 2 3 36
28 15 12 24
20 66

36

︸ ︷︷ ︸

CDense

=

1 2

2
1 6

3 4
5 6

6

︸ ︷︷ ︸

A

1 2 3

2 6
4 5
4 3 6
4 6

6

︸ ︷︷ ︸

BT
Dense

.

To decompress CDense into C, we must store both the columns that formed the coloring
and the rows of C associated with each of those columns. In the example above, the
first column of CDense is composed of columns 1 and 4 from C, and the fourth and
fifth rows belong to column 4 of C. This process is discussed in Section 3.1.

2.2. Proof of the Validity of Matrix Coloring. The example in the previous
subsection suggests that a valid coloring of C can be used to compress BT ; indeed,
whenever a coloring for C is also valid for BT , Theorem 1.6 says that BT

Dense is unique
and thus CDense = ABT

Dense is the matrix of interest. In this section, we prove that
even when c is not a valid coloring for BT , if it is a valid coloring for C we can still
use it for our matrix product. Before we can complete such a proof, we need to create
a new device: an auxiliary matrix B̂T for which c is a valid coloring.

Definition 2.1. Let BT ∈ Rr×n and c be a valid coloring for some matrix with
n columns; c need not be a valid coloring for BT . A vacated matrix B̂T ∈ Rr×n is a
matrix whose nonzero values all coincide with nonzeros from BT but for which c is a
valid coloring.

Under this definition, no nonzeros can be introduced in vacating BT to B̂T ; values
can only be zeroed out to produce a matrix with the appropriate structure to apply
the coloring. If c is a valid coloring of BT , then one trivial vacation of BT would be to
remove no nonzeros. Another trivial vacation of BT that would validate any coloring
would be to zero out every value in the matrix.

Definition 2.2. Let u1,u2, . . . ,uq ∈ Rr. We define the conflicted index set of
{u1, . . . ,uq} as the set of indices

Γ({u1, . . . ,uq}) = { γ ∈ {1, 2, . . . , r} | ui(γ)uj(γ) ̸= 0, for some 1 ≤ i, j ≤ q, i ̸= j}.

We define the conflicted index set of a set of one vector as empty: Γ({u}) = ∅.
The term conflicted index set refers to the fact that these rows are preventing the

set of vectors {u1, . . . ,uq} from being structurally orthogonal. Were they structurally
orthogonal, then the conflicted index set would be empty.

Lemma 2.3. Let u1,u2, . . . ,uq ∈ Rr, and Γ({u1, . . . ,uq}) be the associated
conflicted index set. The set of vectors {û1, û2, . . . , ûq} defined as

ûi(γ) =

{
0 γ ∈ Γ({u1, . . . ,uq})
ui(γ) else

is structurally orthogonal.
Proof. See appendix.

6

This lemma allows us to take any set of vectors and replace certain nonzero
values with zeros to make them structurally orthogonal. We apply this concept to the
columns of BT involved in each color of c in order to create a matrix B̂T for which c
is a valid coloring.

Definition 2.4. Let BT ∈ Rr×n, c = {ℓ1, . . . , ℓp} be a coloring for some matrix
with n columns, and let BT (:, ℓk) denote the set of columns associated with the color

ℓk = {ℓ1k, . . . , ℓ
qk
k }. The minimally vacated matrix B̂T

c ∈ Rr×n is the vacated matrix
generated from BT in the following way:

B̂T
c (γ, ℓ

j
k) =

{
0, γ ∈ Γ(BT (:, ℓk))

BT (γ, ℓjk), else
, 1 ≤ j ≤ qk, 1 ≤ k ≤ p.

Lemma 2.5. Let BT ∈ Rr×n, c = {ℓ1, . . . , ℓp} be a valid coloring for some matrix

with n columns. The coloring c is valid for the minimally vacated matrix B̂T
c .

Proof. Using Lemma 2.3, we know that the columns in B̂T
c (:, ℓk) are structurally

orthogonal for 1 ≤ k ≤ p, and therefore c is a valid coloring of B̂T
c .

A minimally vacated matrix is a vacated matrix where nonzeros have been re-
moved specifically to validate the given coloring; that is, only indices appearing in
the conflicted index set for each color are zeroed-out. Recall that for the product
C = ABT , our goal is to produce a dense matrix BT

Dense from the matrix BT by ap-
plying the coloring c to BT . As stated earlier, c may not be a valid coloring for BT , in
which case we substitute the minimally vacated matrix B̂T

c in place of BT . Lemma 2.5
proves that c is an acceptable coloring for this minimally vacated matrix.

The term “minimally” vacated is used to suggest that no values needed for the
computation ABT are lost, in contrast to another vacation, such as removal of all the
nonzeros of the matrix, which would validate the coloring but probably lose needed
information. More important than the validity of the coloring is the validity of the
equation C = AB̂T

c . If this equality does not hold, then some values in C would

be altered by substituting the minimally vacated B̂T
c for BT , which is unacceptable.

Theorem 2.6 addresses this concern.
Theorem 2.6. Let A ∈ Rm×r, B ∈ Rn×r and c = {ℓ1, . . . , ℓp} be a coloring of

C = ABT . If B̂T
c is the minimally vacated matrix generated by applying c to the matrix

BT , then the equality

ABT = AB̂T
c (2.3)

holds.
Proof. We denote Ĉ = AB̂T

c and prove that C = Ĉ by proving that all the nonzeros

of Ĉ match the nonzeros of C. By definition, each column of C belongs to exactly one
color, so let us denote as ℓpj = {ℓ1pj

, . . . , j, . . . , ℓ
qj
pj} the color containing column C(:, j).

As was done earlier, let C(:, ℓpj) denote the set of columns of C associated with the
color ℓpj .

Call Γj ≡ Γ(BT (:, ℓpj)) the conflicted index set arising from applying the color

ℓpj to the matrix BT . The values C(i, j) and Ĉ(i, j) can be computed in pieces related
to this Γj :

C(i, j) =
∑
γ∈Γj

A(i, γ)BT (γ, j) +
∑
γ ̸∈Γj

A(i, γ)BT (γ, j),

Ĉ(i, j) =
∑
γ∈Γj

A(i, γ)B̂T
c (γ, j) +

∑
γ ̸∈Γj

A(i, γ)B̂T
c (γ, j).

7

Using the definition of a minimally vacated matrix, we can simplify this second
line to

Ĉ(i, j) =
∑
γ ̸∈Γj

A(i, γ)BT (γ, j),

which, combined with the first line, gives

C(i, j) =
∑
γ∈Γj

A(i, γ)BT (γ, j) + Ĉ(i, j).

Since we want C(i, j) = Ĉ(i, j), we must prove that∑
γ∈Γj

A(i, γ)BT (γ, j) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

which we do by proving that

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n : A(i, γ) = 0 for each γ ∈ Γj . (2.4)

By the definition of the conflicted index set Γj , for every γ ∈ Γj at least two
columns of BT must have nonzero rows γ. If we choose any two of those and call their
indexes s and t, we can write

γ ∈ Γj ⇒ there exists s, t ∈ ℓpj , s ̸= t, such that BT (γ, s) ̸= 0 and BT (γ, t) ̸= 0.
(2.5)

Because ℓpj is a valid color for C, the set C(:, ℓpj) is structurally orthogonal:

C(i, s) = 0, or C(i, t) = 0, 1 ≤ i ≤ m.

The structural zero C(i, s) occurs because the vectors A(i, :)T and BT (:, s) are struc-
turally orthogonal. Applying Lemma 1.2 gives

A(i, γ) = 0, or BT (γ, s) = 0, 1 ≤ γ ≤ r, 1 ≤ i ≤ m.

A similar statement is also true for C(i, t), so we join these results to state that for
every 1 ≤ γ ≤ r,

either BT (γ, s) = 0 or BT (γ, t) = 0, or A(i, γ) = 0 for all 1 ≤ i ≤ m. (2.6)

The combination of (2.5) and (2.6), along with the knowledge that each column of C
appears in only one color, is sufficient to prove (2.4).

Theorem 2.6 guarantees that the coloring of C is a sufficient tool to perform
the sparse-dense matrix product ABT

Dense. While creating the minimally vacated

matrix B̂T
c is not difficult in practice, most applications do not require it, as shown in

Corollary 2.7.
Corollary 2.7. For the product C = ABT , any coloring c of C is a valid coloring

of BT if A has no zero columns.
Proof. Start with (2.6), which is valid for any two distinct columns s, t ∈ ℓpj . If A

has no zero columns, then A(i, γ) ̸= 0 for some 1 ≤ i ≤ m, which requires that either
BT (γ, s) = 0 or BT (γ, t) = 0 for 1 ≤ γ ≤ r and makes c a valid coloring for BT .

8

Algorithm 3 Computing C = ABT Using Coloring, Basic Version

1: Compute symbolic C = ABT ; Compute a matrix coloring of C, c
2: Assemble BT

Dense by applying c to BT

3: Perform the sparse-dense matrix product CDense = ABT
Dense

4: Recover C from CDense

3. Algorithms for Sparse-Sparse Matrix Product Using Coloring. Now
that we have laid the foundation, we present Algorithm 3 for computing the product
of sparse matrices by an associated sparse-dense product generated through matrix
coloring. The remainder of this section analyzes this algorithm and adapt it to address
implementation concerns.

One way to analyze Algorithm 3 would be to study the memory traffic. Let nA and
nB denote the average number of nonzeros per row in A and B, respectively, and let
ncolor be the number of colors in c. From our discussion in Section 1.1, we can surmise
that computing ABT using sparse inner products requires roughly O((nA + nB)mn)
memory accesses. On the other hand, ABT

Dense should incur only O(2nAmncolor)
memory accesses, which could yield substantial savings if ncolor ≪ n. We limit our
discussion here to sparse inner products because it offers the most direct comparison,
but a comparison of memory traffic with other matrix multiplication techniques will
be useful for determining the usefulness of coloring in applications.

Despite the gains from performing a sparse-dense matrix product, costs are in-
curred by computing the coloring of C, compressing BT to BT

Dense and then recovering
C from CDense. These eat into the competitive advantage described earlier for the
sparse-dense matrix product and must be taken into account when comparing the
two algorithms. Rather than try to conduct a “pencil and paper” analysis of this
additional complexity, we have performed numerical tests to demonstrate that their
cost is not overwhelming. Those results appear in Section 4.

In line 1 of Algorithm 3, we compute the symbolic product of ABT , which deter-
mines the location of the nonzeros in C before their value is computed [19]. Generally,
this is used to preallocate space for C, but here we also use this structural description
of C to determine a matrix coloring c. We do not discuss the different algorithms for
computing matrix colorings here; the effect of two popular choices, which are available
in the PETSc library, are compared in Section 4.2.

Line 2 was discussed in Section 2, although here we omit the possible need for a
vacated matrix B̂T to form BT

Dense. Recall that Corollary 2.7 shows that this vacation
is not necessary so long as A has at least one nonzero in each column. The sparse-dense
matrix product in line 3 is computed as a sequence of sparse-dense inner products,
each of which implements Algorithm 2. The efficient recovery of the sparse matrix C
from the computed matrix CDense is not trivial; it is discussed in Section 3.1.

Lines 2 through 4 contain the so-called numeric portion of the matrix product.
For many applications, including the PFLOTRAN example in Section 4.1 and the
compactly supported RBF network example in Section 4.3, the nonzero patterns of
matrices remain fixed despite varying numeric values; this allows the symbolic com-
ponent (line 1) to be performed only once while numeric products are computed
whenever matrix values are updated. Our efficiency discussions focus on the numeric
component.

Although not our immediate focus, performing the sparse-dense product ABT
Dense

in lieu of the sparse-sparse product ABT allows for new optimizations leveraging the

9

standardized structure of a dense matrix. One optimization that we exploit is the
computation of multiple columns of CDense simultaneously. Each time A is brought
into memory, four columns of CDense are computed, allowing for more flops per call to
memory. The number of columns that can be efficiently computed simultaneously is
determined by the available memory. Improving the ratio of work per memory access
was a key factor in motivating this work, as discussed in Section 1.1, and the topic
appears again in Section 4.

3.1. Recovering the Sparse Matrix from the Dense Product. The fourth
line of Algorithm 3 decompresses the dense matrix CDense to the sparse matrix C.
Although we have not explicitly stated it previously, more information is needed to
perform this decompression than just CDense and c. In the process of compressing BT

to BT
Dense, multiple columns (previously denoted BT (:, ℓj)) are joined to form a single

column BT
Dense(:, j); to undo this process, we must know how to partition CDense(:, j)

among the columns in the set C(:, ℓj).
In practice, during the compression, the coloring is augmented to also store this

row data. Referring to the example in Section 2.1, we would augment the coloring

c = {{1, 4}, {2, 5}, {3}, {6}}

to include the following row data:

c+={{1 :{1, 3}, 4 :{4, 5}}, {2 :{1, 2, 3}, 5 :{4}}, {3 :{1, 3, 4}}, {6 :{1, 2, 3, 4, 5, 6}}}.

Using this augmented coloring c+, we can decompress a compressed matrix to its
sparse form. Note that this is not the only possible form of an augmented coloring;
all that is required is sufficient information about the rows of CDense(:, j) to recover
C. For instance, the row information for the third and fourth colors above could be
omitted because only one column is present in that color and thus no ambiguity exists.

The strategy used to populate C from CDense can contribute significantly to the
computational cost of Algorithm 3. A simple approach would be to simply traverse
CDense contiguously and populate C with each nonzero according to c+. Implementa-
tion of this revealed that as the matrix sizes increase, the decompression can consume
up to 1/3 of the total execution time; in contrast, the compression of BT to BT

Dense

generally requires a much smaller portion of the total time.
The most direct implementation of the CDense decompression ignores the fact that

values that are very close in CDense may be in very distant columns of C. This occurs
because CDense is stored in dense columns (as is the dense matrix storage standard)
but C is a compressed sparse row matrix. Unpacking any single column of CDense

may insert nonzero entries throughout C; therefore, decompressing each column of
CDense may cause a traversal through the entire C matrix.

To mitigate this expense, we could fill some block of rows of C all at once, thereby
preventing the need for ncolor passes through C. Results for both decompression tech-
niques are presented in Section 4.1. Algorithm 4 incorporates the changes discussed
in this subsection into the coloring-based sparse product algorithm and also notes the
potential need for a minimally vacated BT as described in Theorem 2.6. This algo-
rithm is listed for completeness, to indicate the practical steps that must be taken for
implementation; we in general refer instead to Algorithm 3 for simplicity.

3.2. Algorithms for the RART Product. Thus far we have discussed the
product (2.1a), but our motivating application is multigrid and it involves the product
(2.1b). When Algorithm 3 is adapted for the product C = RART , two options arise:

10

Algorithm 4 Computing C = ABT Using Coloring, Practical Version

1: Compute symbolic C = ABT

2: Compute c, a matrix coloring of C
3: Vacate BT using c if needed for compression
4: Assemble BT

Dense by applying c to BT

5: Augment matrix coloring c → c+

6: Perform the sparse-dense matrix product CDense = ABT
Dense

7: Recover C from CDense using c+

8: Populate mblocksize rows of C at once

C can be computed by using two sparse-dense products or one sparse-dense product
and one sparse-sparse product. The relative efficiency of these options is affected by
the number of colors present in the compression.

The auxiliary matrix W allows us to compute (2.1b) in two steps:

W = ART , (3.1a)

C = RW. (3.1b)

We always compute (3.1a) using coloring, but the choice of coloring determines the
efficiency of that and subsequent computations. The coloring of W, cW, can be used
to implement line 1 in Algorithm 3, at the end of which, a sparse W is returned. Then
a sparse-sparse matrix product between R and W is used to compute C. This process
is described in Algorithm 5.

Algorithm 5 Computing C = RART Using the Coloring of ART

1: Use Algorithm 3 to compute W = ART

2: Compute the sparse-sparse CSR matrix product C = RW

In line 2 of this algorithm, a sparse-sparse matrix product is used instead of the
sparse-dense matrix product that we have been developing in this paper. This is
counterintuitive because we have focused on replacing sparse-sparse matrix products
with coloring-based sparse-dense matrix products, but it may be preferable depending
on the number of colors present in C. If C has too many colors, then it may be faster
to use a sparse-sparse matrix product to compute it, as discussed in Section 3. Should
C have few colors, it may be faster to use Algorithm 6 to compute C.

Algorithm 6 Computing C = RART Using the Coloring of C

1: Compute symbolic C = RART ; Compute matrix coloring cC
2: Compress (and vacate, if needed) RT with cC to form RT

Dense

3: Augment cC to c+C with the necessary row information
4: Use a sparse-dense matrix product to compute WDense = ART

Dense

5: Use a sparse-dense matrix product to compute CDense = RWDense

6: Recover C from CDense using c+C

Algorithm 6 involves two sparse-dense matrix products, each using the coloring
cC instead of the coloring cW as was used in Algorithm 5. The cost of this algorithm
is tied to the number of colors in C, which can be greater than the number of colors in

11

W; for many of the multigrid problems we study, C is much more dense than W, and
it is less effective to use cC for these products. Computational results presented in
Section 4.1 compare these two algorithms and show that the number of colors present
in the coloring is a major factor in the efficiency of the computation.

4. Numerical Experiments. We present four sets of test cases:

• The regional doublet test case from PFLOTRAN [15],
• A three-dimensional linear elasticity PDE test provided in the PETSc library
distribution [3],

• Training of a compactly supported RBF network [18], and
• Matrices from the University of Florida Sparse Matrix Collection [7].

The first two tests are chosen because algebraic multigrid is an efficient solver for the
linear systems arising in both applications; the third and fourth studies the viability
and limitations of the matrix coloring method beyond multigrid applications.

Multigrid is a mathematically optimal method for solving the system of algebraic
equations that arise from discretized elliptic boundary value PDEs [21, 22]. We use a
geometric-algebraic multigrid method (GAMG) in PETSc, which integrates geometric
information into robust algebraic multigrid formulations to yield superior convergence
rates of the multigrid solver [2, 3].

GAMG requires the matrix triple products C = RART to be computed on all grid
levels in the solver setup phase and the matrix product C = GGT to be computed
for creation of connection graphs; these G matrices have structure derived from that
of A and their significance is discussed in [1]. These matrix products, as common
computational primitives, constitute a large portion of the entire simulation cost.

The experiments were conducted by using the PETSc library on a Dell Poweredge
1950 server with dual Intel Xeon E5440 quadcore CPUs at 2.83 GHz and 16 GB DDR2-
667 memory in 4 channels providing 21 GB/s total memory bandwidth. The machine
runs Ubuntu Linux 12.04 64 bit OS. The execution time and floating-point rates were
obtained by using one core with the GNU compiler version 4.7.3 and -O optimization.
Our performance results were obtained by running the entire test cases and profiling
the relevant matrix products. We have done so because standalone benchmarking
often produces unreasonably optimistic reports since much of the data is already in
cache, which is not the case during an actual simulation.

4.1. Regional Doublet Test Case from PFLOTRAN. We demonstrate the
use of matrix coloring on the regional doublet test case [12] from PFLOTRAN, a
state-of-the-art code for simulating multiscale, multiphase, multicomponent flow and
reactive transport in geologic media. PFLOTRAN solves a coupled system of mass
and energy conservation equations for a number of phases, including air, water, su-
percritical CO2, and a number of chemical components. PFLOTRAN is built on
the PETSc library and makes extensive use of PETSc iterative nonlinear and linear
solvers.

The regional doublet test case models variable saturated goundwater flow and so-
lute transport within a hypothetical aquifer measuring 5000 m × 100 m. We consider
only flow problems here because flow solves dominate computation. The governing
equation is a system of time-dependant PDEs. PFLOTRAN utilizes finite-volume
or mimetic finite-difference spatial discretizations and backward-Euler (fully implicit)
timestepping. At each time step, Newton-Krylov methods are used to solve the re-
sulting nonlinear algebraic equations. In all the experiments reported below we have
run 35 time steps, which is the minimum needed to resolve the basic physics.

12

Tables 4.1 and 4.2 show the benefit of using matrix coloring to speed execu-
tion time for computing matrix triple products over small to large three-dimensional
meshes. Three approaches are compared for computing C = RART :

• Using no coloring
– PTAP – stores P = RT in CSR format, and then computes C with sparse

outer products,
– RAP – stores P = RT in CSR format, and performsW = AP and C = RW

one row at a time,
– RART – Algorithm 1 is used to compute each value in C,

• Using the coloring of RART - Algorithm 6, and
• Using the coloring of ART - Algorithm 5.

When computing the product of sparse CSR matrices (as occurs in the RAP case
above), we use the algorithm [11] that forms a row at a time, i.e., C(i, :) = A(i, :)P.

Table 4.1: PFLOTRAN: C = RART

Fine grid size: 50 × 25 × 10; A: 12, 500 × 12, 500, average nonzeros per row = 7; R:
1, 203× 12, 500, average nonzeros per row = 34. Times presented are in seconds. The
use of coloring in the RART computation is clearly beneficial. Also, the choice of
coloring (studying the structure of RART and applying Algorithm 5 or studying ART

and applying Algorithm 6) plays major role in the algorithm efficiency.

No Coloring Coloring
PTAP RAP RART RART (ncolor=59) ART (ncolor=20)

3 Symbolic .0066 .016 .011 .019 .024

246 Numeric 1.30 1.46 2.39 1.51 .760

Total Time 1.31 1.48 2.40 1.53 .784

Table 4.2: PFLOTRAN: C = RART

Total computation time (in seconds) presented for increasing fine grid density. The
“time100” column implements dense to sparse decompression with 100 row blocks.
Algorithm 5 continues to outperform Algorithm 6. Unpacking multiple rows at once
during the decompression (as discussed in Section 3.1) speeds the computations for
the ART coloring but not for the RART coloring.

No Coloring Coloring
RART Algorithm 6, using RART Algorithm 5, using ART

Grid Size time ncolor time time100 ncolor time time100
50× 25× 10 2.4 59 1.5 1.6 20 .78 .84

100× 50× 20 28 70 26 27 24 14 12

200× 100× 40 246 84 374 376 25 162 132

The first column of Table 4.1 gives the total number of symbolic and numeric
matrix triple products accumulated from all grid levels and all linear iterations during
the entire simulation. The symbolic matrix products were computed only during
the solver setup phase, while the numeric matrix products were executed for every
nonlinear iteration of GAMG. Time spent creating matrix colorings is included in
the symbolic row and contributed approximately half the symbolic execution time
for the coloring columns. The matrix colorings for this example are created by using

13

the PETSc default algorithm, largest-first ordering (discussed in Section 4.2). When
compared with the repeated execution of numeric matrix products performed during
the solve, the time spent on the symbolic products is minimal.

In Table 4.1, we see that the number of colors for matrix RART is 59, whereas
ART (Column 6) has only 20 colors. This disparity is the result of greater density
in C. While both of these are far smaller than 1203, the column size of both RT

and the final sparse matrix product C, the greater sparsity in ART demands only a
third as many colors and leads to significantly shorter execution time. The last row of
Table 4.1 gives the total execution time, that is, the sum of the symbolic and numeric
components. It shows that computing C = RART by using the matrix coloring of ART

takes roughly one-third of the execution time of using no coloring.

Table 4.2 presents the same experiments over larger three dimensional meshes; it
should be noted that the average number of nonzeros per row for matrices A and R
remains unchanged as the grid 50 × 25 × 10, i.e., 7 for A and approximately 34 for
R. The use of Algorithm 5 to compute the product continues to outperform standard
sparse inner products and Algorithm 6. Here we also consider the dense to sparse
decompression in block rows of 100 in addition to conducting the entire decompression
in one sweep; this idea was introduced for C = ABT in Section 3.1, and the results are
presented in the time100 columns. There is a marked benefit when using the block
decompression for the ART coloring option but no benefit for the RART coloring.
This can likely be attributed to the number of colors, since more colors indicates
more zero-valued nonzeros during the dense compression and therefore extra work is
performed.

Table 4.3: PFLOTRAN: Flop Rate (megaflops/second)
Using coloring greatly increases the flop rate because of the sparse to dense compres-
sion. Even though the RART coloring has a higher flop rate, its total computational
time (from Table 4.2) is higher because many of the flops performed are unnecessary.
The ART coloring has few enough colors in it to maintain a high flop rate without
excessive unneeded computation involving zero-valued nonzeros. The coloring com-
putation uses the 100 block row decompression.

Fine Meshes No Coloring Coloring RART Coloring ART

50× 25× 10 76 1232 724

100× 50× 20 64 936 606

200× 100× 40 59 663 496

Table 4.3 helps clear the computational picture by studying the flop rate for
the three methods of computing RART . The floating point computation required for
the “No Coloring” option is significantly less than the coloring options because only
nonzero matrix entries are involved in the computation; as discussed in Section 1.1,
the efficiency (measured by flop rate) suffers as a result.

This issue is alleviated by the coloring because necessary values are stored contigu-
ously in the dense matrix, thereby allowing for more efficient access. That improved
efficiency is visible in the two columns of coloring results: both have significantly
higher flop rates than the computation without coloring. Following this logic further,
the higher flop rate would suggest that the RART coloring is superior to the ART

coloring. Although computations are happening more quickly there, we know that
the total time required for the computation is also greater.

14

This seeming contradiction is caused by the number of zero-valued nonzeros in-
troduced into the dense matrix. When the sparse matrices are used in the inner
product computation, only nonzeros are involved in the computation, but accessing
them is a slow proposition. On the other extreme, when the RART coloring is used,
too many zeros are involved in the inner products, allowing for more efficient memory
access but involving so many zero-valued nonzeros that the total computational time
is excessive. The coloring of ART has many fewer colors, which reduces the number
of superfluous zeros in the dense matrix, and achieves the best overall performance.
This is why the flop rate is slightly lower, but the total computational time (shown
in Table 4.2) is better.

4.2. Three Dimensional Linear Elasticity PDEs. The tests in this section
are found in the PETSc library (see petsc/src/ksp/ksp/examples/tutorials/ex56.c).
They model a three-dimensional bilinear quadrilateral (Q1) displacement finite el-
ement formulation of linear elasticity PDE defined over a unit cube domain with
Dirichlet boundary condition on the side y=0, and load of 1.0 in x + 2y direction
on all nodes. Three physical variables are defined at each grid point (i.e., degrees of
freedom equals 3). We use the tests to further demonstrate the performance benefit
of using matrix colorings and illustrate that the achieved acceleration depends on the
matrix nonzero structures and selected matrix coloring.

We apply two matrix coloring algorithms provided as part of MINPACK [17]:
Largest-first ordering (LF) [13] and smallest-last ordering (SL) [16] to the grid oper-
ator matrices C = RART in Table 4.4 and to the matrix product C = GGT (used for
connection graphs) in Table 4.5. These tables present the dimensions of the matrices,
the execution time spent on computing numeric matrix products, and the number
of colors obtained from the matrix colorings. We present only the results using the
coloring of ART (Algorithm 5) in Table 4.4.

Table 4.4: Elasticity PDE: Execution Time of Numeric C = RART (seconds)
As the matrix size increases the number of colors increases more quickly with the
LF coloring than the SL coloring. This causes the SL time to scale more effectively,
although both colorings outperform the “No Coloring” option.

Matrix Size at Fine Grids (ave. nonzeros/row) No Coloring Coloring ART

A R LF ncolor SL ncolor

3,000 × 3,000 (66) 156 × 3,000 (336) .022 .0092 48 .0092 48

24,000 × 24,000 (73) 1,122 × 24,000 (456) .24 .15 66 .15 60

192,000 × 192,000 (77) 8,586 × 192,000 (524) 2.23 1.68 84 1.33 66

648,000 × 648,000 (78) 27,924 × 648,000 (554) 7.86 6.07 90 4.75 69

As the mesh size increases for matrices ART , the number of colors produced
by the SL algorithm grows slower than that of LF: from 48 to 69 vs. 48 to 90. This
results in improved performance using SL colorings as shown in Table 4.4. This stands
in contrast to the results for the graph connection matrices GGT show in Table 4.5
where the LF algorithm generates a more consistent number of colors as the mesh size
grows, and outperforms the SL algorithm. These results suggest that no one coloring
algorithm is ideal for all circumstances.

4.3. Compactly Supported RBF Networks. Radial basis function (RBF)
networks are used in machine learning to predict function values from noisy scattered

15

Table 4.5: Elasticity PDE: Execution Time of Numeric C = GGT (seconds)
As the matrix G size grows, the number of colors from the LF coloring remains
constant, allowing it to outperform the SL coloring. Again, both coloring choices
are faster than the “No Coloring” option.

Matrix Size at Fine Grids No Coloring Coloring

G (ave. nonzeros/row) LF ncolor SL ncolor

1,000 × 1,000 (20) .012 .0026 125 .0029 136

8,000 × 8,000 (23) .13 .038 125 .043 149

64,000 × 64,000 (25) 1.22 .42 125 .51 158

216,000 × 216,000 (26) 4.31 1.49 125 1.81 161

data [18]; the network is a linear combination of RBFs which is trained by solving an
optimization problem. To solve that problem, which balances fidelity of the network
with its regularity (controlled by µ ∈ R), the linear system

(KKT + µIm)c = Ky (4.1)

is solved, where K ∈ Rm×n is populated by RBF values centered at m nodes and
evaluated at the n data locations. The regularity parameter µ prevents oscillations
caused by noise, and y ∈ Rn are the function values evaluated at the n data locations.

Many common RBFs (e.g., Gaussians) will produce dense K matrices, but com-
pactly supported RBFs such as the Wendland or Wu functions will produce sparse
K matrices [23]. As a result, the KKT product will be a sparse matrix product.
Furthermore, compactly supported RBFs are often of the form

K(x,z; ℓ, ε) = ϕℓ(εr)(1− εr)+, r = ∥x− z∥2, (4.2)

where ℓ is a smoothness parameter such that ϕℓ is a polynomial of degree ℓ and ε
is a shape parameter which allows for manipulation of the support of the RBF K.
Because the nonzero structure of the matrix is determined by the ε term, different
smoothness parameters can by tested without changing the structure. This makes
compactly supported RBF networks an application which could benefit from matrix
multiplication through coloring.

Fig. 4.1 displays the results of computing KKT for a sample of n = 200000 Halton
points in 2D [8] with variable m Halton kernel centers (the number of rows of K) and
variable ε (larger ε yields a sparser matrix). A clear middle region of ε and m values
exists where the Coloring computation is more efficient than a Direct computation
involving sparse inner products and the explicit storage of the Transpose for use in
a CSR matrix product. Matrices associated with the bottom-right of this graph are
small and sparse and movement towards the top-left yields larger and denser matrices;
the coloring algorithm is fastest in the transition region.

4.4. Matrices from the University of Florida Sparse Matrix Collection.
To examine the efficiency of applying matrix coloring to the matrices beyond the
multigrid applications, we selected matrices from the University of Florida Sparse
Matrix Collection [7]:

1. SNAP/amazon0302 - commerce network: A is 262111 × 262111 with 1234877
nonzeros.

2. Mittelmann/watson_2 - linear programming: A is 352013 × 677224 with
1846391 nonzeros.

16

ε − shape parameter

m
 −

 n
um

be
r

of
 k

er
ne

l f
un

ct
io

ns

50 100 150 200 250

10
3

10
4

10
5

Transpose
Coloring
Direct

Fig. 4.1: These experiments compare the cost of the numerical matrix product KKT

required for (4.1) as computed with three different methods: the Coloring method
using Algorithm 4, a Direct sparse inner product computation involving Algorithm 1
(preferable in the lower-right region) and an explicit computation and storage of the
Transpose followed by the product of two CSR matrices (preferable in the upper-left
region). For a variety of RBF matrix widths (x axis) and shape parameters (y axis),
there exists a middle region where the coloring computation is preferable.

3. JGD_Homology/ch7-8-b5 - combinatorial: A is 141120× 141120 with 846720
nonzeros.

4. SNAP/wiki-Vote - social network: A is 8297× 8297 with 103689 nonzeros.
5. SNAP/roadNet-CA - transportation: A is 1971281 × 1971281 with 5533214

nonzeros.
6. GHS_psdef/bmwcra_1 - structural: A is 148770×148770 with 10641602 nonze-

ros.
7. Gleich/usroads - transportation: A is 129164×129164 with 330870 nonzeros.
8. DIMACS10/144 - undirected graph: A is 144649×144649 with 2148786 nonze-

ros.
9. DNVS/m_t 1 - structural: A is 97578× 97578 with 9753570 nonzeros.
10. Norris/torso2 - 2D/3D: A is 115967× 115967 with 1033473 nonzeros.
11. Williams/cant - finite elements: A is 62451× 62451 with 4007383 nonzeros.
12. GHS_psdef/s3dkq4m2 - structural: A is 90449×90449 with 4427725 nonzeros.

For these matrices A ∈ Rm×n, we compute C = AAT ∈ Rm×m. To effectively study the
benefit of computing sparse inner products with this coloring approach, we introduce
a ratio which describes how many additional nonzeros are introduced into CDense:

compression ratio =
nonzeros of CDense

nonzeros of C
(4.3)

Because CDense is stored as a dense matrix, # nonzeros of CDense = mncolor. This
ratio appears in Table 4.6; if the dense matrix has introduced few “zero-valued nonze-
ros” then the ratio tends towards 1.

Table 4.6 suggests that products of the form C = AAT benefit from using the
coloring strategy rather than sparse inner products primarily if the ratio in (4.3) is
sufficiently low. In general, if this ratio is too high, then too much additional work

17

Table 4.6: For the A matrices listed above, C = AAT is computed, and the numerical
computation time (but not the symbolic time) is listed in seconds. When the coloring
strategy introduces few nonzeros, its cost may be less than the sparse inner product
computation in the “No Coloring” column. This penalty for using a dense matrix
is tracked in the “ratio” column, where a value of 1 would indicate no nonzeros are
introduced.

Matrix No Coloring Coloring

name avg. nnz per row time time ncolor m/ncolor ratio

SNAP/amazon0302 5 1.63 25.24 2032 129 61.72

Mittelmann/watson_2 5 0.44 1.82 228 1544 15.14

JGD_Homology/ch7-8-b5 6 2.74 8.34 1745 81 12.24

SNAP/wiki-Vote 12 2.03 1.68 4819 2 8.47

SNAP/roadNet-CA 3 0.64 0.94 19 103751 3.64

GHS_psdef/bmwcra_1 72 13.01 14.26 1155 129 3.46

Gleich/usroads 2.5 .035 .049 16 8073 3.44

DIMACS10/144 15 1.90 1.50 191 757 3.21

DNVS/m_t1 100 12.64 10.17 945 103 2.52

Norris/torso2 9 0.16 0.14 42 2761 1.70

Williams/cant 64 6.09 2.07 401 155 1.44

GHS_psdef/s3dkq4m2 50 2.66 1.22 178 508 1.21

is created by working with a dense matrix to take advantage of the better flop rate
for sparse-dense inner products discussed in Table 4.3; note, however, that this result
is not always true, as the SNAP/roadNet-PA matrix is better compressed than the
SNAP/wiki-Vote, but performs much worse. The average number of nonzeros does
not seem immediately useful as a tool to predict of the speed of this coloring strategy,
in contrast to our initial beliefs. Similarly, the average number of columns per color,
measured by m/ncolor, seems to be an unhelpful diagnostic tool, suggesting that
developing a strategy to decide the viability of coloring is nontrivial.

We note that matrices with origins in network science (including Gleich/usroads
and SNAP/amazon0302) seem to rarely benefit from the coloring strategy. This may
be caused by the structure of such matrices, e.g., power law or small network graphs.
Possible remedies for this issue include working with A as a block matrix to exploit
colorings within blocks, or an alternate coloring strategy specifically for such applica-
tions.

Another shortcoming of this coloring strategy that must be explicitly mentioned
is the additional memory cost of using it on matrices with a high “ratio” value. When
this value is greater than two, more memory must be allocated for the compressed
matrix than was required for the original matrix, which is a significant drawback that
can also cripple the efficiency of this method.

5. Conclusions and Future Work. Earlier research has accelerated the com-
putation of sparse Jacobians by using matrix coloring to evaluate several columns
simultaneously. This work has been adapted to accelerate sparse matrix products
computed with sparse inner products by applying a matrix coloring to instead com-
pute a related compressed sparse-dense matrix product. We have proved that for the
product C = ABT , the matrix coloring of C is always a viable choice for compressing
BT , although slight modifications may be necessary if A has any zero columns.

18

Algorithms for both (2.1a) and (2.1b) were proposed, as well as considerations for
practical implementation. Numerical results suggested that simulations using multi-
grid that computed sparse matrix products through inner products can be accelerated
significantly through the use of coloring. Those results can be improved by fine tuning
the data traffic during the decompression of the computed dense matrix to the desired
sparse matrix. We also studied the effect of the choice of coloring algorithm on the
efficiency of the compression and found that different algorithms perform better in
different circumstances.

Future adaption of this coloring approach to parallel matrices will inherit much
of the theory, but the added cost of data traffic may require some retooling or reorga-
nization. Additionally, it would be valuable to study the use of this method on block
matrices, a common structure for many applications. Beyond multigrid, our motivat-
ing application, we believe that applications from the discrete math community (e.g.,
breadth-first search) will benefit from our coloring algorithm.

The transition to a sparse-dense matrix product opens the door to numerous
optimizations that are unavailable in the sparse-sparse setting. For instance, our
current software computes four columns of the dense matrix each time the sparse
matrix is loaded into memory, thereby reducing the total cost of accessing the sparse
matrix. Another improvement we hope to consider is the interlacing of several columns
of the dense matrix during the product to allow for more computation per sparse
matrix cache miss. Decompressing the resulting product requires new techniques,
so more work is required to take advantage of this and other previously unavailable
opportunities.

We plan to incorporate the block dense to sparse decompression discussed in Sec-
tion 3.1 into the PETSc library for faster computation of finite-difference Jacobians
using coloring. Another interesting advance might be to develop a new coloring al-
gorithm that incorporates the cost of decompression when deciding how to organize
colors. A coloring algorithm that accelerates the decompression would benefit both
the matrix multiplication setting and the evaluation of finite difference Jacobians.
Furthermore, the value of this algorithm lies primarily in situations where the col-
oring can be reused for many products with the same sparsity structure, and thus
its practicality is a function of the ratio of the cost of finding the coloring to the
cost of the numerical computation; as a consequence, this algorithm would not be
appropriate for a single RART product. If an algorithm for computing the coloring
were designed to take advantage of the ABT structure we have studied here, it would
improve the viability of this approach by decreasing the setup cost.

Acknowledgments. The authors were supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357. The authors sincerely thank the referees for their
constructive comments, which strengthened the presentation of this manuscript. We
extend our thanks to Jed Brown, Lois Curfman McInnes and Charles Van Loan for
their help and support, and Glenn Hammond for providing us the PFLOTRAN test
case.

REFERENCES

[1] M. F. Adams, Algebraic multrigrid methods for constrained linear systems with applications
to contact problems in solid mechanics, Numerical Linear Algebra with Applications, 11
(2004), pp. 141–153.

19

[2] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos, Ultrascalable
implicit finite element analyses in solid mechanics with over a half a billion degrees of
freedom, in ACM/IEEE Proceedings of SC2004: High Performance Networking and Com-
puting, 2004. Gordon Bell Award.

[3] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech.
Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[4] A. Buluc and J. R. Gilbert, Parallel sparse matrix-matrix multiplication and indexing: Im-
plementation and experiments, SIAM Journal on Scientific Computing, (2012).

[5] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian
matrices, J. Inst. Maths Applics, (1974), pp. 117–119.

[6] S. Dalton, N. Bell, and L. N. Olson, Optimizing sparse matrix-matrix multiplication for
the GPU, tech. report, University of Illinois Urbana-Champaign, 2014.

[7] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Transactions
on Mathematical Software, 38 (2011), pp. 1–25.

[8] G. E. Fasshauer, Meshfree Approximation Methods with Matlab, vol. 6 of Interdisciplinary
Mathematical Sciences, World Scientific Publishing Co., Singapore, 2007.

[9] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph
coloring for computing derivatives, SIAM REVIEW, 47 (2005), pp. 629–705.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations (4th ed.), Johns Hopkins University
Press, Baltimore, MD, 2012.

[11] F. G. Gustavson, Two fast algorithms for sparse matrices: multiplication and permuted trans-
position, ACM Transactions on Mathematical Software, 4 (1978), pp. 250–269.

[12] G. E. Hammond, P. C. Lichtner, and R. T. Mills, Evaluating the performance of par-
allel subsurface simulators: An illustrative example with PFLOTRAN, Water Resources
Research, (2013).

[13] W. Klotz, Graph coloring algorithms, Mathematics Report, (2002), pp. 1–9.
[14] M. Kubale, Graph Colorings, Contemporary Mathematics (American Mathematical Society)

v. 352, American Mathematical Society, 2004.
[15] P. Lichtner et al., PFLOTRAN project. http://ees.lanl.gov/pflotran/.
[16] D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring

algorithms, J. ACM, 30 (1983), pp. 417–427.
[17] J. J. Moré, D. C. Sorenson, B. S. Garbow, and K. E. Hillstrom, The MINPACK project,

in Sources and Development of Mathematical Software, W. R. Cowell, ed., 1984, pp. 88–
111.

[18] M. J. L. Orr, Introduction to radial basis function networks, tech. report, University of Edin-
burgh, Centre for Cognitive Sciences, 1996.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
MA, 1996.

[20] B. Smith and H. Zhang, Sparse triangular solves for ILU revisited: Data layout crucial to
better performance, International J. High Performance Computing Applications, 25 (2011),
pp. 386–391.

[21] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281–309.
[22] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Elsevier Science, 2000.
[23] H. Wendland, Scattered Data Approximation, vol. 17 of Cambridge Monographs on Applied

and Computational Mathematics, Cambridge University Press, Cambridge, 2005.

Appendix. Proof of Theorem 1.6. Each column of CDense is created from a
single color, and no column of C appears in more than one color. Thus, proving that
any column of CDense is unique proves that C is unique. We will prove that each value
of the kth column of CDense is unique.

If the value CDense(j, k) = 0, then
∑qk

i=1 |C(j, ℓik)| = 0, which could occur only if
C(j, ℓ1k) = . . . = C(j, ℓqkk) = 0. This would prevent having a conflicting nonzero value
for that location, so all zero values in the kth column are unique.

If the value CDense(j, k) ̸= 0, then at least one value in {C(j, ℓ1k), . . . ,C(j, ℓ
qk
k)} is

nonzero. If exactly one value is nonzero, then the value CDense(j, k) is unique. We
must prove that only one of these qk values is nonzero; we begin by assigning the
nonzero value to the νk index, namely, CDense(j, ℓ

νk

k) ̸= 0.

Because c is a valid matrix coloring of C, the columns {C(:, ℓ1k), . . . ,C(:, ℓ
qk
k)} must

20

be structurally orthogonal. Lemma 1.2 tells us that for the jth row,

C(j, ℓsk)C(j, ℓ
νk

k) = 0, 1 ≤ s ≤ qk, s ̸= νk.

Since we have assumed that CDense(j, ℓ
νk

k) ̸= 0, this lemma demands that C(j, ℓsk) = 0
for 1 ≤ s ≤ qk, s ̸= νk. Therefore, every value in the kth column of CDense is uniquely
determined. �

Proof of Lemma 2.3. If Γ = ∅, then the vectors in {u1, . . . ,uq} are already
structurally orthogonal. Otherwise, we must prove that

|ûi|T |ûj | = 0, 1 ≤ i, j ≤ q, i ̸= j.

Let us simplify the notation for this proof by defining Γ ≡ Γ({u1, . . . ,uq}). For any
i ̸= j, the inner product can be separated into two components,

|ûi|T |ûj | =
∑
γ∈Γ

|ûi(γ)||ûj(γ)|+
∑
γ ̸∈Γ

|ûi(γ)||ûj(γ)|

=
∑
γ∈Γ

|0||0|+
∑
γ ̸∈Γ

|ui(γ)||uj(γ)| =
∑
γ ̸∈Γ

|ui(γ)||uj(γ)|.

Because the conflicted index set includes indices such that ui(γ)uj(γ) ̸= 0, any γ ̸∈ Γ
must have ui(γ)uj(γ) = 0, leaving the summation above equal to zero. �

21

Government License. The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting
on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

22

