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Abstract Given scattered data realized from a Gaussian random field, unobserved
values of the field can be predicted through kriging. To do so accurately, the covari-
ance of the Gaussian random field must be known or, more commonly, estimated
from the data. Maximum likelihood estimation of the parameters of a family of
candidates for the covariance kernel is one such strategy, but evaluating the like-
lihood function can be ill-conditioned for certain covariance kernels. In order to
stably approximate the likelihood function we leverage the Hilbert–Schmidt SVD,
a decomposition of the covariance matrix constructed directly from the eigenvalues
and eigenfunctions of the Hilbert–Schmidt integral operator associated with the co-
variance kernel. We illustrate the effectiveness of this tool, which was previously
used for positive definite kernel interpolation, with some numerical experiments.
We also draw connections to numerical analysis, where one might be more inter-
ested in minimizing errors or error bounds, and introduce two further criteria that
can be used for parameter estimation: one based on minimizing the kriging variance
(which is closely related to the power function used in numerical analysis), and the
other involving the determinant of an augmented matrix.

1 Introduction

Gaussian random fields (see Section 2 for more details) provide useful models for
interpolating scattered data [6, 32], design of computer experiments [27, 28], surro-
gate or response surface modeling [8, 13], as well as statistical or machine learning
[25, 33]. There is also a development of related numerical methods based on pos-
itive definite kernels—after all, the covariance kernel of a Gaussian random field
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is just that. These kernel-based numerical methods are applied to similar problems,
but also to the numerical solution of partial differential equations [5]. For an ex-
position that illuminates both the stochastic and deterministic perspective of these
kernel-based methods we refer the reader to [9, 30].

As the references just mentioned indicate, these kernel-based methods have been
around for about three decades now and many researchers have experimented with
them for their specific applications—some with more success than others. When
things do not turn out as expected, the most common sources of frustration for these
users have been (1) the fact that many kernel-based methods tend to suffer from nu-
merical instability, (2) the presence of one or more free parameters in the definition
of many popular kernels, and (3) the high computational cost often associated with
the use of kernel-based methods. In this paper we will address mostly item (2), but
in doing so we will also draw upon recent advances regarding item (1). There are
other exciting developments currently under way—especially in the area of numer-
ical methods for solving PDEs [12]—that are based on localized (finite difference-
like) approximations. These methods actually address all three concerns just listed,
but these local methods do not converge as rapidly (for problems with sufficiently
smooth solutions) as the more commonly used global methods discussed here which
give rise to concerns (1)–(3).

In this paper we will focus on parameter estimation in the context of the scattered
data fitting problem. This model problem is appropriate for most of the applications
mentioned above and can be viewed from a deterministic or stochastic perspective.
For this problem we are given locations X = {x1, . . . ,xN} ⊂ Ω ⊆ Rd (frequently
referred to as the design) with associated scalar1 values y =

(
y1 · · · yN

)T ∈ RN

(usually referred to as the data). In the stochastic setting, we interpret the given
data as a realization of the vector of random variables Y =

(
Yx1 · · · YxN

)T . Here
Yxi denotes the random variable associated with the values taken by the (unknown)
Gaussian random field Y = {Yx}x∈Ω at the point xi ∈Ω . In the deterministic setting,
the data is viewed as samples of an (unknown) function f .

In both settings, we make a connection to a specific, albeit unknown, positive
definite kernel K. In the stochastic setting, K is the covariance kernel of the Gaussian
random field Y , i.e., the vector of random variables Y follows a multivariate normal
distribution, Y ∼ N (µ,σ2K), with mean vector µ = E[Y] and covariance matrix
σ2K = σ2 (K(xi,x j))

N
i, j=1. We provide more details on Gaussian random fields and

motivate our explicit use of the process variance σ2 in Section 2 below.
In the deterministic setting the connection to K appears via the function space in

which the data function f “lives”. We assume that this function space is a reproduc-
ing kernel Hilbert space HK(Ω) with reproducing kernel K. A specific choice of K
prescribes the covariance structure of the random field in the stochastic interpreta-
tion, and it prescribes the smoothness and the inner product (and, therefore, norm)

1 More general types of data—such as vector-valued, or even (continuous) function-valued data—
have also been investigated in the context of approximation theory [14, 23], geostatistics [20] and
machine learning [16, 21]. These problems necessitate the use of matrix-valued or operator-valued
kernels for which the concerns addressed in this paper also apply. In the interest of keeping our
discussion transparent we limit ourselves to the scalar-valued case.
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of the Hilbert function space in the deterministic setting (see Section 5.1 for more
details).

Since everything hinges upon our choice of the kernel K—but this kernel usually
is not known—it is common to consider a parametrized family of kernels. Such
a family may be parametrized by one or more parameters which then need to be
estimated from the given data. Some common kernel families include [9]

Gaussians (squared exponentials): K(x,z) = e−ε2r2
,

generalized multiquadratics: K(x,z) = (1+ ε
2r2)β , β ∈ R\N0, (1)

Matérn kernels: K(x,z) =
K̄β−d/2(εr)(εr)β−d/2

2β−1Γ (β )
, β > d/2.

Here r = ‖x− z‖2, K̄β−d/2 is a modified Bessel function of the second kind, β is a
smoothness parameter, and ε is a positive shape parameter that determines the lo-
cality/scale of K. Other possibilities include d-dimensional tensor product kernels
made up of products of one-dimensional kernels, with possibly a different set of
parameters (or even a different kernel) associated with each space dimension. Fur-
thermore, the kernels need not be radial kernels. For example, one could use (tensor
products of) the univariate periodic spline kernels, iterated Brownian bridge (IBB)
kernels, or Chebyshev kernels [9]:

periodic spline: K(x,z) =
(−1)β−1

(2β )!
B2β (|x− z|), β ∈ N,

=
∞

∑
n=1

2
(2nπ)2β

cos(2nπ(x− z)) ,

IBB: K(x,z) =
∞

∑
n=1

2
(n2π2 + ε2)β

sin(nπx)sin(nπz), β ∈ N, (2)

Chebyshev: K(x,z) = 1−a+2a(1−b)
b(1−b2)−2b(x2 + z2)+(1+3b2)xz
(1−b2)2 +4b(b(x2 + z2)− (1+b2)xz)

,

= 1−a+2a(1−b)
∞

∑
n=1

bn−1Tn(x)Tn(z), a ∈ (0,1], b ∈ (0,1).

Here B2β are Bernoulli polynomials of degree 2β and Tn are Chebyshev polyno-
mials of degree n. The parameter b also acts like a shape parameter, causing more
localization for b→ 1 and ill-conditioning for b→ 0. The parameter a is not that
significant as long as a ∈ (0,1) as it just shifts and scales the kernel vertically. How-
ever, setting a = 1 completely eliminates the vertical shift and therefore makes it
markedly more difficult to fit data with a nonzero mean.

The presence of ε (and potentially other free parameters such as β or b) allows
for flexibility to choose a kernel supported by the data without having to explore
the endless selection of all positive definite kernels. Unfortunately, this flexibility is
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often accompanied by the danger of severe ill-conditioning for small ε because of
the increasing linear dependence of K(·,xi) and K(·,x j) even when i 6= j.

In Section 3 we describe the Hilbert–Schmidt SVD, a strategy developed recently
to avoid this ill-conditioning. In Section 4 we discuss the use of maximum likeli-
hood estimation to choose optimal kernel parameters for prediction, and how the
unstable likelihood function can be stably approximated using the Hilbert–Schmidt
SVD. In Section 5 we introduce the kriging variance as another viable parametriza-
tion criterion along with a third criterion which combines the kriging variance with
the maximum likelihood criterion. All of the criteria discussed in this paper are
summarized in Section 6 and the effectiveness of the Hilbert–Schmidt SVD as a
tool to stabilize all of these parametrization strategies is demonstrated in the context
of numerical experiments in Section 7.

Other possible approaches to dealing with ill-conditioning of the linear system
associated with kernel-based approximation include (possibly iterated) Tikhonov
regularization [24], alternate bases such as those for polyharmonic splines of Beat-
son, Billings and Light [2], the Newton bases of Müller and Schaback [22], or the
(weighted) SVD-bases of De Marchi and Santin [7]. Each of these methods comes
with its own list of advantages and disadvantages. To our knowledge, the accuracy
of the parameter estimation results we report in Section 7 has not been achieved
with any other method. However, our results are limited to those special cases for
which a Hilbert–Schmidt SVD is available.

2 Gaussian Random Fields and Kriging

2.1 Gaussian Random Fields

We begin by defining a probability space (W,A,P), whereW is the sample space
of all possible outcomes, A is a set of subsets ofW containing all the events, and P
is a probability measure. We also denote by Ω the parameter space, which for our
purposes will simply be Ω = Rd . This means that the observations from which we
want to predict come from Rd .

A function Y : Ω ×W → R (evaluated as Y (x,ω) for x ∈ Ω and ω ∈ W) is a
random field if, for every x ∈Ω , Y is an A-measurable function of ω . Our notation
for this is Y = {Yx}x∈Ω . Note that, for a fixed x, Y (x, ·) = Yx is a random variable,
while for a fixed ω , Y (·,ω) = y(·) is a deterministic function of x referred to as a
realization of the random field.

As already mentioned in Section 1, Gaussian random fields are quite popular
in situations that involve the modeling of natural phenomena based on given data
and one of their especially attractive features is that they are relatively easy to work
with. In particular, a Gaussian random field is completely characterized by its first
two moments, namely its mean E[Yx] and its covariance Cov(Yx,Yz) = σ2K(x,z).

The mean of Y is a function µ which is defined at any point x ∈Ω as
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µ(x) = E[Yx] =
∫
W

Yx(ω)dP(ω) =
∫
R

ydFYx(y),

where FYx is the cumulative distribution function of Yx with respect to P. For our
purposes we will assume that Yx is continuous so that we may write

µ(x) =
∫
R

ypYx(y)dy

with density function pYx . Likewise, note that the covariance kernel K of Y satisfies

σ
2K(x,z) = Cov(Yx,Yz) = E[YxYz]−µ(x)µ(z). (3)

Remark 1. Here the scalar parameter σ2 is known as the process variance and in the
statistics literature this is often included in the definition of the covariance kernel,
so that, e.g., the Gaussian covariance would be, K(x,z) = σ2e−ε2‖x−z‖2 . In the ap-
proximation theory setting such an amplification factor is generally irrelevant and
therefore—coming from that community—we prefer to define the Gaussian in the
form K(x,z) = e−ε2‖x−z‖2 as in (1). Having the process variance explicitly appear
in our formulas will allow us to better illuminate the connection between the con-
cepts of kriging variance (from statistics) and power function (from approximation
theory) and therefore deal as precisely as possible with concepts of accuracy and
error.

For the remainder of this paper we simplify the situation and assume the data was
generated by a zero-mean Gaussian process, i.e., µ ≡ 0, although a non-zero mean
can also be considered. The density of the (zero-mean) multivariate normal random
variable Y is then given by

pY(y) =
1√

(2πσ2)N det(K)
exp
(
− 1

2σ2 yT K−1y
)
, (4)

where K is a symmetric positive semi-definite matrix since K is a positive defi-
nite (covariance) kernel. Thus, the inverse K−1 will exist whenever K has no zero
eigenvalues. If zero eigenvalues do arise one can replace the inverse of K with its
pseudoinverse (see, e.g., [18, Section 2.5.4]). The main challenge, however, is not
whether K is invertible or not. Even if K is invertible it may still be numerically
ill-conditioned, and we address this challenge in Section 3.

2.2 Simple Kriging

There are several different ways to arrive at the (simple) kriging predictor for Yx0 , the
value of the Gaussian random field at a previously unobserved location x0 (see, e.g.,
[9, Chapter 5]). Following the Bayesian approach, one conditions the unobserved
data at x0 on the observed data at all locations in X = {x1, . . . ,xN} and, using the
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vector notation

k(x0)
T =

(
K(x0,x1) · · · K(x0,xN)

)
, (5)

one obtains

Yx0 |Y = y∼N
(

k(x0)
T K−1y , σ

2(K(x0,x0)−k(x0)
T K−1k(x0))

)
, (6)

where the posterior mean E[Yx0 |Y = y] = k(x0)
T K−1y is known as the kriging pre-

diction. The variance

Var(Yx0 |Y = y) = σ
2(K(x0,x0)−k(x0)

T K−1k(x0)) (7)

associated with this predictor is known as the (simple) kriging variance and it cor-
responds to the minimal mean-squared error of the kriging predictor (assuming this
predictor is linear). This explains the fact that the kriging prediction represents the
best linear unbiased prediction for Yx0 [32].

Remark 2. The reader should note that the preceding discussion—and in fact every-
thing in this paper—assumes the data to be noiseless. In the presence of noise, one
usually applies an additional form of regularization (such as smoothing splines or
ridge regression (see, e.g., [9, Chapter 15]) and the kriging variance ends up having
a more complicated form and interpretation.

3 Hilbert–Schmidt SVD

3.1 Basic Review of the Hilbert–Schmidt SVD

Positive definite kernels have an expansion in terms of their Mercer series

K(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z),

where λn and ϕn, n = 1,2, . . ., are the Hilbert–Schmidt eigenvalues and eigenfunc-
tions respectively. Three examples of positive definite kernels and their Mercer se-
ries are listed in (2). The Mercer series for the Gaussian kernel is also known (see,
e.g., [9, Example 12.1] or [25, Section 4.3.1]) and it is used in later parts of this pa-
per. As discussed in [11], the rapid decay of these eigenvalues for high smoothness
kernels such as the Gaussian is the main cause of ill-conditioning in the covariance
matrix K.

In [4], the authors described the vector k appearing in (5) using these eigenvalues
and eigenfunctions,

k(x)T = φ(x)T ΛΦT , (8)
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where φ(x)T =
(
ϕ1(x) · · · ϕN(x) · · ·

)
is an infinite length vector (because there are

infinitely many eigenfunctions) and

Λ =

(
Λ1

Λ2

)
, Φ =

φ(x1)
T

...
φ(xN)

T

=
(
Φ1 Φ2

)
,

such that Λ1,Φ1 ∈ RN×N and Λ2 and Φ2 are the (infinite-sized) remainders of the
matrices Λ and Φ, respectively. We mention here for use in Section 4 that the eigen-
values appear in non-increasing order and that, for Gaussians, the magnitude of the
smallest eigenvalue in Λ1, λN , is an order of ε2 larger than λN+1, the largest eigen-
value in Λ2. This is true for any N, although the design of the Hilbert–Schmidt SVD
in dimension d > 1 is too complicated for this article. It is discussed in [11] in the
context of the Gaussian kernel.

Manipulations to the ΛΦT term in (8) reveal that

ΛΦT =

(
Λ1

Λ2

)(
ΦT

1
ΦT

2

)
=

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
Λ1ΦT

1 ,

which provides a way to express the vector k of standard basis functions in terms of
a stable basis ψ via (8),

k(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
︸ ︷︷ ︸

ψ(x)T

Λ1ΦT
1 = ψ(x)T Λ1ΦT

1 . (9)

The term stable basis is used because (9) isolates the swiftly decaying eigenvalues
in Λ1 which are the main source of ill-conditioning in the standard basis. Applying
the same idea to K (which consists of rows of k evaluated at all the locations in X )
yields the Hilbert–Schmidt SVD (HS-SVD)

K = ΨΛ1ΦT
1 , (10)

a matrix factorization of the covariance matrix K. In contrast to standard matrix
decompositions which start with a matrix and produce the resulting factors, the
HS-SVD is constructed from the Hilbert–Schmidt eigenvalues and eigenvectors—
without the need to ever form the potentially ill-conditioned matrix K.

To demonstrate the usefulness of the HS-SVD, we write the kriging prediction
(6) using (9) and (10):

E[Yx0 |Y = y] = k(x0)
T K−1y

= ψ(x0)
T Λ1ΦT

1 (ΨΛ1ΦT
1 )
−1y

= ψ(x0)
T Ψ−1y. (11)



8 Michael McCourt and Gregory E. Fasshauer

Now, the ill-conditioning due to the dangerous Λ−1
1 term, introduced by applying

K−1 = Φ−T
1 Λ−1

1 Ψ−1, is removed analytically through the Λ1 term present in k.

3.2 Hilbert–Schmidt SVD for tensor product kernels

Determining, analytically, the Mercer series of a positive definite kernel is not triv-
ial, and as of this writing we have only knowledge of a select few [9]. Tensor prod-
uct kernels (also sometimes referred to as simply product kernels) are a form of
positive definite kernel constructed by multiplying two or more positive definite
kernels. Most often, the goal of this is to dissect a high-dimensional setting into
one-dimensional kernels,

K(x,z) = K1(x1,z1) · · · Kd(xd ,zd), (12)

although different structures of tensor product kernels are also viable. If the Mer-
cer series of each of the component kernels K1, . . . ,Kd is known, then the Hilbert–
Schmidt SVD of the tensor product K in (12) can be determined. This section will
work through this derivation for a product of two kernels, for which the notation is
already complicated, but the same mechanism can be extended to arbitrarily many
component kernels.

Define the Mercer series

K1(x,z) =
∞

∑
m=1

λmϕm(x)ϕm(z) = φ(x)T Λφ(z),

and

K2(x,z) =
∞

∑
m=1

ξmνm(x)νm(z) = v(x)T Ξv(z),

which in turn defines the tensor product kernel

K(x,z) = K1(x1,z1)K2(x2,z2)

= φ(x1)
T Λφ(z1)v(x2)

T Ξv(z2)

= λ1ξ1ϕ1(x1)ϕ1(z1)ν1(x2)ν1(z2)

+λ1ξ2ϕ1(x1)ϕ1(z1)ν2(x2)ν2(z2)+λ2ξ1ϕ2(x1)ϕ2(z1)ν1(x2)ν1(z2)

+ . . . .

It may be preferable to write this as

K(x,z) = (φ(x1)⊗v(x2))
T (Λ⊗Ξ)(φ(z1)⊗v(z2)) (13)

to more explicitly recognize the fact that, given the Mercer series of the component
kernels, we know the Mercer series of a tensor product kernel.
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Of course, using this tensor product runs counter to the standard strategy of sort-
ing the eigenvalues in nonincreasing order. In order to recover that ordering we
define the matrix P to be a (infinite) permutation matrix such that the diagonal of
Λ̃ = P(Λ⊗Ξ)PT is in nonincreasing order. Then, defining φ̃(x) = P(φ(x1)⊗v(x2)),
gives the more standard form of the Mercer series,

K(x,z) = (φ(x1)⊗v(x2))
T PT P(Λ⊗Ξ)PT P(φ(z1)⊗v(z2)) = φ̃(x)T Λ̃φ̃(z).

In summary, our ability to apply the Hilbert–Schmidt SVD change of basis to
tensor product kernels relies on two points:

1. knowing the Mercer series of the component kernels, and
2. determining an appropriate permutation matrix P.

The former requirement is infinitely harder than the latter, since, if the eigenvalues
are known, sorting the products of eigenvalues that form Λ⊗Ξ to determine P is
trivial.

Remark 3. The strategy for ordering the products of eigenvalues (and their corre-
sponding eigenfunctions) of equal magnitude—and thus the choice of permutation
matrix P—is not unique. This should be done in a way that maximizes the rank of
the N×N eigenfunction matrix Φ1. The paper [11] and [9, Section 19.4.3] contain
some discussion of this issue.

4 Maximum Likelihood Estimation with the HS-SVD

As mentioned in Section 1, a standard strategy for performing prediction involves
choosing a preferred family of kernels to serve as the covariance of the random
field Y and then, given the data, parametrizing them optimally. The kernels in (1) or
(2) have one or two parameters: the shape parameter ε (or b) and the smoothness
parameter β , but arbitrarily many are possible. Given that, presence of the parameter
ε alone provides a sufficient challenge because small ε will cause the matrix K in
(6) to become ill-conditioned. In (11) we showed how this ill-conditioning can be
overcome for predictions, and in this section, we show how to overcome this for
maximum likelihood estimation of the kernel parameter ε .

4.1 The Likelihood and Profile Likelihood Criteria

The likelihood function is related to the probability that a specific ε generated the
observed data {xi,yi}N

i=1. As explained in, e.g., [19], the likelihood function for a
Gaussian random variable is its joint density, pY(y) from (4). This quantity is subject
to overflow and underflow, thus a modification of the likelihood,
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CMLE(ε,σ
2;X ,y) =−2log(pY(y))−N log2π

= log
((

σ
2)N

detK
)
+

1
σ2 yT K−1y, (14)

is more practical for optimization. Another common modification is to solve for the
σ2 term analytically by setting the derivative with respect to σ2,

∂

∂σ2 CMLE(ε,σ
2;X ,y) = N

σ2 −
yT K−1y
(σ2)2 ,

equal to zero. This gives the maximum likelihood estimate

σ
2
mle(ε) =

yT K−1y
N

, (15)

which can be substituted back into (14) to define (minus some constants) the profile
log likelihood,

CMPLE(ε;X ,y) = CMLE(ε,σ
2
mle(ε);X ,y) = N log(yT K−1y)+ logdetK. (16)

The value of ε which minimizes CMPLE maximizes the likelihood (called the maxi-
mum likelihood estimator, or MLE), and thus maximizes the probability of the data
having been generated over all possible shape parameters.

Remark 4. Notice that, even though the process variance σ2 served no role in the
mean of (6), its existence can play a role in the parametrization process. It is because
the σ2 term would be handled separately here that our definition of covariance in
(3) separated K and σ2.

4.2 Computing logdetK and yTK−1y

When K becomes ill-conditioned (such as when ε is small), computing yT K−1y and
detK with standard methods (e.g., Cholesky factorization) is likely inaccurate, leav-
ing us unable to use the MLE to judge the validity of small ε for prediction purposes,
despite the fact that (11) would allow us to make predictions accurately. Using the
HS-SVD (10), we can follow a similar strategy as in Section 3 to approximate the
value of the profile log likelihood criterion (16) for small ε .

Computing logdetK is relatively straightforward using K = ΨΛ1ΦT
1 :

logdetK = logdetΨ+ logdetΛ1 + logdetΦT
1 . (17)

First we note that Λ1 is diagonal, and therefore the very small eigenvalues can be
handled by taking their logarithms. Furthermore, because ΦT

1 was factored while
forming the stable basis ψ in (9) and (assuming a prediction must also be computed)
Ψ was factored while computing (11), the cost of performing (17) is negligible.
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A similar strategy will allow us to compute yT K−1y. In the simple kriging (or
kernel interpolation) setting, the system Kc = y gives rise to the best linear unbiased
prediction2 k(x0)

T c = k(x0)
T K−1y mentioned at the end of Section 2. As demon-

strated in (11), using the stable basis ψ instead of the standard basis k, the predic-
tion becomes ψ(x0)

T b = ψ(x0)
T Ψ−1y, which corresponds to solving the system

Ψb = y. Thus we define b ∈ RN via

Ψb = y ⇐⇒ b = Ψ−1y (18)

and note that the vector b would be available already from predicting with (11).
Applying (18) and the Hilbert–Schmidt SVD (10) to yT K−1y gives

yT K−1y = (Ψb)T (ΨΛ1ΦT
1 )
−1Ψb = bT ΨT Φ−T

1 Λ−1
1 b. (19)

To evaluate ΨT Φ−T
1 , we need to study ψ as defined in (9),

ψ(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
=⇒ Ψ = Φ

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
. (20)

Using the block notation Φ =
(
Φ1 Φ2

)
as before, we can write

ΨT = ΦT
1 +Λ−1

1 Φ−1
1 Φ2Λ2ΦT

2 ,

and using this in (19) gives

yT K−1y = bT Λ−1
1 b+bT Λ−1

1 Φ−1
1 Φ2Λ2ΦT

2 Φ−T
1 Λ−1

1 b. (21)

Because the corrector matrix Λ2ΦT
2 Φ−T

1 Λ−1
1 was already computed while forming

Ψ with (20), computing the second term of (21) may be most efficiently done with

bT Λ−1
1 Φ−1

1 Φ2Λ2ΦT
2 Φ−T

1 Λ−1
1 b =

∥∥∥Λ
−1/2
2 (Λ2ΦT

2 Φ−T
1 Λ−1

1 )b
∥∥∥2

2
. (22)

4.3 Approximating yTK−1y for small ε

While computing (21) is possible, it may be preferable to simply exploit the
quadratic (and therefore nonnegative) form of both terms on the right hand side
to produce the bound

yT K−1y≥ bT Λ−1
1 b, (23)

2 In the kernel interpolation setting one instead can show that k(x0)
T c = k(x0)

T K−1y is the min-
imum norm interpolant of the data y in the reproducing kernel Hilbert space HK(Ω) associated
with K.
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and ignore the remaining correction term (22). Note that, although Λ−1
1 is diagonal

and bT Λ−1
1 b is straightforward to compute, it grows unboundedly as ε shrinks to

zero because of the growth in the eigenvalues3.
Before we move on to show that it is indeed safe to ignore the correction term

when ε is small, we make two comments pertinent to infinitely smooth kernels (such
as Gaussians kernels), which are our primary kernels of interest:

• Ψ→ Φ1 for increasingly small ε which should mean that ΨT Φ−T
1 → IN , and, in

turn,
yT K−1y = bT ΨT Φ−T

1 Λ−1
1 b→ bT Λ−1

1 b as ε → 0,

which is discussed below.
• The nth value in Λ−1

1 is 1/λn, which can be very large for small ε . This term is
the reason that computing yT K−1y with the standard basis is unwise in the ε→ 0
limit.

The bound (23) is useful in the ε → 0 limit so long as λN+1/λN → 0. Because
the eigenfunctions are ordered so that λ1 ≥ λ2 ≥ . . ., and because the Mercer series
is uniformly convergent, we know that limε→0 Φ2Λ2ΦT

2 = 0. This ordering also tells
us

Φ2Λ2ΦT
2 =

∞

∑
k=N+1

λkϕ̂kϕ̂
T
k =O(λN+1ϕ̂N+1ϕ̂

T
N+1),

so that
‖Φ2Λ2ΦT

2 ‖2 ≤ λN+1CΦ,N,d ,

where ϕ̂T
k =

(
ϕk(x1) · · · ϕk(xN)

)
is not to be confused with the infinite-length vec-

tor φ as defined in (8). Note that it can be the case that multiple eigenvalues equal
λN+1, often for d > 1, but this will only affect the constant CΦ,N,d .

Using ‖Λ1/2
2 ΦT

2 ‖2
2 = ‖Φ2Λ2ΦT

2 ‖2 as ε → 0 provides an upper bound for the cor-
rection term (22):∥∥∥Λ

1/2
2 ΦT

2 Φ−T
1 Λ−1

1 b
∥∥∥2

2
≤ ‖Λ1/2

2 ΦT
2 ‖2

2‖Φ−T
1 ‖

2
2‖Λ−1

1 b‖2
2

≤ λN+1CΦ,N,d‖Φ−T
1 ‖

2
2‖Λ−1

1 b‖2
2

≤ λN+1

λN
CΦ,N,d‖Φ−T

1 ‖
2
2bT Λ−1

1 b, (24)

where we have used ‖Λ−1
1 b‖2

2 ≤
∥∥∥Λ
−1/2
1

∥∥∥∥∥∥Λ
−1/2
1 b

∥∥∥2

2
= bT Λ−1

1 b/λN . This roughly
implies that

yT K−1y = bT Λ−1
1 b

(
1+O

(
λN+1

λN

))
,

3 We use ε here although some kernels are parametrized with other parameters, and some choices
may not always approach the flat limit when that parameter→ 0 (see, e.g., [9] for more details on
flat limits). In that case one would have to modify the discussion accordingly.
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assuming Φ−T
1 is well behaved in the ε → 0 limit; Remark 3 mentions this and pro-

vides references discussing potential issues. We present an example that illustrates
this behavior in Section 7.

5 Kriging Variance as a Parametrization Strategy

The use of profile likelihood (16) for parametrizing kernels is popular, but by no
means the only viable strategy for parameter estimation. Cross-validation [15], in-
cluding the leave-one-out variety [26], is also a popular parametrization strategy; the
literature compares it (both favorably and unfavorably) to likelihood [17, 31, 34]. In
this paper we do not discuss cross-validation.

Another tool, which parallels a strategy developed independently in numerical
analysis that we discuss in Section 5.1, involves minimizing the variance of kriging
predictions. Recall from (6) that the variance of a kriging prediction at a point x0
given data y observed at locations X = {x1, . . . ,xN} is

Var(Yx0 |Y = y) = σ
2 (K(x0,x0)−k(x0)

T K−1k(x0)
)
= σ

2PK,X (x0)
2,

where we have introduced the power function PK,X , which is always positive, except
at x0 ∈ X where PK,X (x0) = 0. As a parametrization strategy, it is important to note
the presence of two distinct components which play two distinct roles: the prediction
location x0 only appears in PK,X (x0) and the data values y can only impact the
process variance σ2. Assuming the goal of using Gaussian random fields to model
data is to effectively predict values at as yet unobserved locations, one strategy by
which to parametrize the random field is to choose parameters that minimize the
variance at the desired prediction location x0.

Immediately, there are some issues with this strategy. The smallest value this
kriging variance can take is zero, which it will take if the process variance σ2 = 0.
Of course, σ2 = 0 would imply that the Gaussian random field has a zero covari-
ance kernel, and thus it would not actually be random at all. Rather than using this
strategy to determine a suitable σ2 value, we may instead refer back to (15) and use
the maximum likelihood estimate σ2

mle(ε) = yT K−1y/N. Doing so would produce
the quantity

Var
(
Yx0 |Y = y,σ2 = σ

2
mle(ε)

)
=

yT K−1y
N

PK,X (x0)
2. (25)

To convert this quantity into a parametrization strategy, we can choose ε to minimize
some norm of this variance: potentially a function norm, or just the value of it at
some location where a prediction is desired. For simplicity, we choose to minimize
the maximum value of the variance, thus defining this parametrization objective as

CKV(ε) = log
(
yT K−1y

)
+ max

x0∈Ω\X
log
(
PK,X (x0)

2) , (26)
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where the constant term has been removed and the log is taken to avoid likely over-
flow/underflow issues during computation. In design of experiments, this might be
referred to as G-optimality.

5.1 Numerical Analysis Connection through Reproducing Kernel
Hilbert Spaces

One of the original parametrization tools developed from the numerical analysis
perspective involved a bound on the error of the approximation. Recall from (6) that
our prediction mechanism, given the observed data, is defined as

E[Yx0 |Y = y] = k(x0)
T K−1y.

In Section 1, we described a Gaussian random field as a function of two components:
the spatial component x ∈ Ω ⊆ Rd and the stochastic component ω ∈ W . If we
suppose that all observations of the field occur for the same ω , then the quality
of predictions would be judged against a deterministic function y = Y (·,ω). One
natural goal of a parametrization strategy might therefore be to choose a kernel
parametrization so as to minimize∣∣y(x0)−k(x0)

T K−1y
∣∣2, (27)

that is, the difference between the true and predicted values, at a desired prediction
location x0. The quantity is squared largely for cosmetic purposes.

At this point, we must recall some basic theory regarding reproducing kernel
Hilbert spaces (RKHSs) from functional analysis. In particular, the reproducing
property holds (for more details see, e.g., [10, 35]), i.e., any function f ∈ HK(Ω),
the RKHS associated with K on Ω , satisfies f (x) = 〈 f ,K(·,x)〉HK for x ∈Ω , where
this inner product is the RKHS inner product. Of particular consequence is that,
because K(·,x) ∈HK(Ω),

〈K(·,x),K(·,z)〉HK = K(x,z),
〈K(·,x),k(·)〉HK = k(x), (28)
〈k(·),k(·)〉HK = K.

Here the latter two identities contain inner products of vectors of functions and
therefore are to be considered in an elementwise sense.

Because our deterministic function y is in the RKHSHK(Ω) (see [3] for a proof)
we know that y(x) = 〈y,K(·,x)〉HK and therefore y = 〈y,k(·)〉HK . We can use this
to express our predictions as

k(x0)
T K−1y = k(x0)

T K−1〈y,k(·)〉HK = 〈y,k(x0)
T K−1k(·)〉HK .
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Using this, we can dissect the difference (27) as∣∣y(x0)−k(x0)
T K−1y

∣∣2 = ∣∣〈y,K(·,x0)〉HK −〈y,k(x0)
T K−1k(·)〉HK

∣∣2
=
∣∣〈y,K(·,x0)−k(x0)

T K−1k(·)〉HK

∣∣2
≤ ‖y‖2

HK

∥∥K(·,x0)−k(x0)
T K−1k(·)

∥∥2
HK

, (29)

where the Cauchy–Schwarz inequality was invoked in the final line. Some manipu-
lations using the identities (28) above show that

PK,X (x0)
2 =

∥∥K(x0, ·)−k(x0)
T K−1k(·)

∥∥2
HK

.

We, unfortunately, do not know ‖y‖HK (since we do not know y), but we can ap-
proximate it under the assumption that the predictions do a decent job of repre-
senting y (see [9, Chapter 9] for details). In particular, it may be reasonable to say
‖y‖HK ≈ ‖k(·)T K−1y‖HK , and we can compute

‖k(·)T K−1y‖2
HK

= 〈k(·)T K−1y,k(·)T K−1y〉HK = yT K−1y,

using (28). Substituting this into (29) gives the (approximate) bound∣∣y(x0)−k(x0)
T K−1y

∣∣2 ≤ yT K−1y PK,X (x0)
2.

Comparing this with (25), we see that the same logic used to minimize the kriging
variance from a statistical standpoint can also have the effect of minimizing the
prediction error from an approximation theory standpoint.

5.2 A Joint Profile Likelihood and Kriging Variance Objective

Interpreting the role of a parametrization objective is valuable when choosing how
best to appropriately parametrize a Gaussian random field. The profile likelihood
(16) measures the degree to which a chosen ε represents the data that was observed4.
The kriging variance measures the degree to which a chosen ε is suitable for pre-
dicting unobserved values. In this section we merge these two goals into a single
parametrization objective which simultaneously considers both to an appropriate
degree.

To derive this joint criterion, we begin by considering the random variable

Ỹx0 =

(
Yx0
Y

)

4 For simplicity we use only a scalar parameter ε , but everything said here holds also for a vector
of kernel parameters.
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which consists of the jointly distributed set of observations from the random field Y
including both the observed data locations in X and the desired prediction location
x0. This Ỹ is normally distributed with zero mean (because Y has zero mean) and
covariance

σ
2K̃(x0) = σ

2
(

K(x0,x0) k(x0)
T

k(x0) K

)
;

although the details were omitted, this matrix is used to determine the predictive
distribution in (6).

At this point, we can use the properties of determinants to say

detσ
2K̃(x0) = det

(
σ

2
(

K(x0,x0) k(x0)
T

k(x0) K

))
=
(
σ

2)N+1
PK,X (x0)

2 detK, (30)

using the definition of the power function PK,X (x0)
2 =K(x0,x0)−k(x0)

T K−1k(x0).
Taking the logarithm of this determinant and using σ2 = σ2

mle(ε) from (15) gives

logdetσ
2K̃(x0) = N log

(
yT K−1y

)
+ logdetK+ log

(
yT K−1y

)
+ log

(
PK,X (x0)

2) ,
where x0 6∈ X is required for PK,X (x0)> 0. Following the same strategy of maximiz-
ing this determinant as was used for the kriging variance yields a new parametriza-
tion criterion,

CDET(ε) = max
x0∈Ω\X

logdetσ
2K̃(x0) = CMPLE(ε)+CKV(ε), (31)

Thus minimizing CDET(ε) has the effect of balancing the desire to minimize the
prediction variance at x0 and maximize the fit to the existing data. Of course, trying
to minimize the determinant of a matrix seems dangerous. However, since K is a
positive definite covariance kernel and x0 /∈X , we know that the matrix K̃(x0) must
be nonsingular. Moreover, the presence of the yT K−1y term provides a necessary
counterbalance to prevent this determinant from approaching an optimum at zero.

Remark 5. Computation of the power function is subject to the same ill-conditioning
as any expression involving K−1; this ill-conditioning can be similarly resolved with
PK,X (x0)

2 = K(x0,x0)−ψ(x0)
T Ψ−1k(x0). What cannot be resolved so easily is the

numerical cancelation caused by the subtraction of two close numbers which occurs
in the ε → 0 limit. To remedy this problem, the power function must be computed
with

det K̃(x0) = PK,X (x0)
2 detK ⇐⇒ PK,X (x0)

2 =
det K̃(x0)

detK

using the stable determinant computation from Section 4.2. See [9, Chapter 14.1.1]
or [29] for more details.
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6 Summary of Parametrization Methods

In this paper we have discussed three parametrization criteria: the maximum (pro-
file) likelihood criterion, the kriging variance criterion, and the determinant crite-
rion. To our knowledge, the latter has not been previously discussed. There are many
other criteria that appear in the literature. Some of these, such as cross validation and
a Golomb–Weinberger error criterion are discussed in [9, Chapter 14].

The three criteria of interest to us in this paper are (see (16), (26), and (31))

CMPLE(ε) = N log(yT K−1y)+ logdetK,

CKV(ε) = log
(
yT K−1y

)
+ max

x0∈Ω\X
log
(
PK,X (x0)

2) ,
CDET(ε) = CMPLE(ε)+CKV(ε).

The discussion above addressed how to stably compute the main ingredients that
appear in these criteria, namely the logarithm of the native space norm of the in-
terpolant, yT K−1y, the determinant of the covariance matrix, detK, and the square
of the power function, PK,X (x0)

2. For the reader’s convenience we summarize once
more how to compute each of these quantities and include also a “standard” solu-
tion that can be used in the absence of ill-conditioning or cancelation. Whenever the
(positive definite) matrix K is not severely ill-conditioned (usually this is true for
kernels with low smoothness such as Matérn kernels or compactly supported Wend-
land kernels) it is most efficient to work with its Cholesky factorization K = LLT .
This is the basis for the following “standard” approaches.

The native space norm of the interpolant can be computed either as

yT K−1y = yT L−T L−1y = ‖L−1y‖2
2, (32)

or as (see (21) and (22))

yT K−1y = bT Λ−1
1 b+

∥∥∥Λ
−1/2
2 (Λ2ΦT

2 Φ−T
1 Λ−1

1 )b
∥∥∥2

2
, (33)

where b is the solution of the linear system Ψb = y based on the stable basis from
the Hilbert–Schmidt SVD.

The logarithm of the determinant of K is either computed via the diagonal entries
of the Cholesky factor L as

logdetK = logdet(LLT ) = 2logdetL = 2
N

∑
i=1

logLii, (34)

or via the Hilbert–Schmidt SVD as (see (17))

logdetK = logdetΨ+ logdetΛ1 + logdetΦT
1 . (35)

The standard approach to computing the square of the power function would be
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PK,X (x0)
2 = K(x0,x0)−k(x0)

T K−1k(x0) = K(x0,x0)−‖L−1k(x0)‖2
2, (36)

or, using the Hilbert–Schmidt SVD,

PK,X (x0)
2 = K(x0,x0)−ψ(x0)

T Ψ−1k(x0). (37)

However, both of these representations can lead to severe loss of significant digits
(as described in Remark 5), in which case the computation requires

PK,X (x0)
2 =

det K̃(x0)

detK
. (38)

Using (38) to compute log(PK,X (x0)
2) requires two applications of the logdet for-

mula given above: one for the standard covariance matrix K corresponding to N
points, and the other for an augmented matrix based on the locations X̃ =X ∪{x0}.

Based on the relative complexity of the computation required to obtain (a norm
of) the power function, we can see—if one is not interested in first computing the
CMPLE(ε) and CKV(ε) criteria—that it is easiest to compute the determinant crite-
rion directly as

CDET(ε) = max
Ω\X

logdetσ
2K̃(·) = max

Ω\X
log
[
(σ2)N+1PK,X (·)2 detK

]
= (N +1) log(σ2)+ logdetK+max

Ω\X
log
(
PK,X (·)2)

where we, again, use the profile variance σ2
mle(ε) = yT K−1y/N from (15) and drop

the constant term. In practice, the max is approximated by sampling at finitely many
locations.

7 Numerical Experiments

The main purpose of this paper has been the development of a framework for the use
of the Hilbert–Schmidt SVD as described in Section 4 to perform parameter estima-
tion for kriging predictors (or deterministic radial basis or other kernel-based ap-
proximations) in a numerically stable way. We emphasize the profile likelihood (16)
because of its popularity in the literature and numerical instabilities—especially for
values of the kernel parameters that often provide highly accurate models, but lead
to numerically ill-conditioned linear systems. Other criteria were also introduced
and summarized in the preceding section.

We now present a series of numerical experiments that illustrate the effectiveness
of our approach. In Example 1 we focus on the profile likelihood and its two com-
ponents (17) and (21) as well as their approximations as discussed in Section 4.2.
This example uses Gaussian kernels on a set of one-dimensional data. Example 2
demonstrates the effectiveness of the HS-SVD for scattered two-dimensional data
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using an anisotropic tensor product Chebyshev kernel as defined in (2). Of course,
we are not limited to data fitting in Euclidean domains. Example 3 demonstrates the
utility of our approach on the sphere.

The last two examples, Example 4 and Example ??, provide some comparisons
amongst the additional parametrization criteria discussed in Section 5 and Section 6.

Another, separate, question regards the validity of these parameter estimation
criteria for parametrizing any given kernel for predictive purposes. Unfortunately,
such a question must be answered on an application-specific and kernel-specific
basis, and it is far beyond the scope of this paper. As mentioned earlier, we also do
not deal with randomness/noise in the data.

Example 1 (Stable computation and approximation of the profile likelihood). In this
example we use data generated from the test function f (x) = cos(3πx). The func-
tion is sampled at N = 24 locations X sampled evenly within [−1,1] to produce
the vector y of data values. The profile likelihood criterion CMPLE(ε) (cf. (16)) is
evaluated for values of ε spaced logarithmically in [.1,10] using both the direct ap-
proach (labeled MLE direct in Fig. 1) based on Cholesky decomposition as laid out
in Section 6, and the more elaborate formulas in (17) and (21) which provide the
stable result (labeled MLE HS-SVD).

This data is then used to make predictions at Neval = 100 evenly spaced points
in the domain, and the relative error compared to f is displayed in Fig. 1 with the
label Error. It is apparent that the MLE direct computation loses accuracy for ε < 3
and suffers a complete breakdown for ε < 1 because K−1 is too ill-conditioned. By
comparison, the MLE HS-SVD method suffers no ill-conditioning. The maximum
likelihood estimator is near the “optimal” Error, though it does not precisely locate
it.

The MLE direct curve in Fig. 1 becomes wholly unreliable for small ε because
K−1 (computed here using the MATLAB function pinv) is too ill-conditioned; there
appears to be a minimum value for ε ≈ .1 which is just an artifact of the inaccurate
computation. The stable method using the HS-SVD is reliable for all values of ε

and clearly identifies a single region where the likelihood function is minimized.
Moreover, this region is close to the “true” optimal value of ε which can be inferred
from the Error graph based on the (known) function that generated the data for this
test problem.

In Fig. 2 we illustrate the behavior of the components of the MLE HS-SVD: the
Bound (23) and the Correction (22). As described in Section 4, the correction is
only guaranteed to be negligible for ε → 0, as supported by this graph. For larger
values of ε , the correction may be on the same order as the bound, as indicated in
the shaded strip. Because the cost of computing the full profile likelihood criterion
CMPLE(ε) is negligible by comparison to solving (18), approximating the value of
CMPLE(ε) by (23) is of more use from a theoretical standpoint than a computational
one.

Fig. 2 also illustrates the Gap between the bound and the correction. This gap is
computed as log10(Bound/Correction) and measured on the right y-axis.
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Fig. 1 Comparison of relative error based on the known test function f (x) = cos(3πx) and MLE
estimators of the optimal shape parameter ε for Gaussian kernels computed via the (unstable) direct
approach MLE direct and the stable approach MLE HS-SVD.

Fig. 2 Comparison of the Bound, computed with (23), and the Correction, computed with (22),
using the left y-axis. The right y-axis is used to measure the Gap between these values. As ε → 0,
the bound dominates, but for larger values of ε no guarantee exists. In fact, the shaded gray strip
denotes a region where the correction is greater than the bound.

Example 2 (2D interpolation with anisotropic tensor product Chebyshev kernel).
In this example we demonstrate that the same strategy for computing the profile
likelihood can also be applied in higher dimensions, with kernels different from the
Gaussian kernel, and with more than one parameter.
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We create data values y by sampling the test function

f (x1,x2) = cos
(√

x2
1 + .49x2

2

)
+(x1 + x2)

2−1 (39)

at 81 Halton points scattered in the square [−1,1]× [−1,1]. The kernel used for this
example is a tensor product version of the Chebyshev kernel from (2) with a fixed
value of a = [0.1,0,1] and a grid of 625 different values of the shape parameter
vector b = [b1,b2] with each component spaced logarithmically in [0.0001,0.5012].

Fig. 3 Comparison of profile likelihood criterion computed without (left) and with HS-SVD
(right). The top row shows the error of the kriging prediction based on Halton data sampled from
the test function (39) using an anisotropic tensor product Chebyshev kernel displayed on a loga-
rithmic scale. The bottom row displays the corresponding profile likelihood estimates.

As Fig. 3 shows, the prediction (top row) as well as the profile likelihood crite-
rion CMPLE(ε) (bottom row) can be stably and reliably computed with the help of
the HS-SVD (right column)—as compared to the direct approach, displayed in the
left column, and computed using the standard basis and standard linear algebra tools
such as the Cholesky decomposition and SVD. It is apparent that the stably com-
puted profile likelihood parametrization criterion (bottom right) identifies a region
for an “optimal” parameter estimate b = [b1,b2] that matches the region of smallest
error (top right).
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As an aside, we point out that use of a tensor product kernel in no way requires the
data to be located on a grid. For more on tensor product kernels, and the Chebyshev
kernel in particular, we point the reader to [9].

Example 3 (Multiquadric interpolation on a sphere). As discussed in [9, Chap-
ter 15.3], spherical harmonics can be used to form the Hilbert-Schmidt series
of zonal positive definite kernels appropriate for data from a sphere. The kernel
K(x,z) = (1+ γ2− 2γxT z)−1/2 has the same locality for γ → 1 and flat limit as
γ→ 0 that we observed in the b parameter of the Chebyshev kernels, and as a result
it is subject to the same ill-conditioning issues.

N = 400 points from the Womersley maximal determinant design [1] were used
to sample the function

f (x1,x2,x3) = 2e−2x2
2 −3cos(7x1−2x3)

at locations satisfying x2
1 + x2

2 + x2
3 = 1. 2000 quasi random points on the sphere

were chosen at which to evaluate the prediction error, which is plotted alongside the
values of CMPLE(γ) for a range of γ values in Fig. 4.

Fig. 4 The HS-SVD provides a stable strategy for covariance parametrization even for analyzing
data on a sphere.

Example 4 (Comparison of various parametrization criteria for 1D interpolation
with Gaussian kernel). In this example we compare the different parametrization
criteria summarized in Section 6, i.e., the profile likelihood criterion CMPLE(ε), the
kriging variance criterion CKV(ε;x0), and the joint determinant criterion CDET(ε).
Each of these criteria is computed in different ways. For the profile likelihood cri-
terion we have the direct approach using the Cholesky decomposition (32) and (34)
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(denoted as MLE direct in Fig. 5) as well as the stable version computed via the HS-
SVD as in (33) and (35) (denoted as MLE HS-SVD). The kriging variance criterion
is computed directly using (32) and (36) (denoted as KV direct), and computed
stably either via (33) and (37) (denoted as KV HS-SVD) or via the determinant for-
mula (38) (denoted as KV HS-SVDdet), which avoids loss of significant digits due
to numerical cancelation. The determinant criterion is also computed analogously
leading to the three curves denoted by DET direct, DET HS-SVD, and DET HS-
SVDdet.

The test function for this example is the same as for Example 1, i.e., f (x) =
cos(3πx) with N = 24 evenly spaced locations X ⊂ [−1,1]. A radial Gaussian ker-
nel with 111 values of the shape parameter ε spaced logarithmically in [.1,10]. As a
benchmark for the effectiveness of the various parametrization we have also added
an Error curve in Fig. 5, which requires knowledge of the test function. As in Ex-
ample 1, we have used two y-axes in Fig. 5 to measure the parametrization criteria
on the left y-axis (some of them scaled by N so that they all evaluate over a similar
range), and the fitting error on the right y-axis.

Fig. 5 Comparison of various parametrization criteria for a 1D interpolation problem with Gaus-
sian kernels.

This example illustrates that we have derived stable and reliable versions for
each of the three parametrization criteria by using the stable basis representation
associated with the HS-SVD as well as the determinant formula for the computation
of the power function which is not subject to loss of significant digits. For this
example, all three criteria identify similar optimality regions for the shape parameter
which are also similar to the optimal value from the Error graph. On the other hand,
the standard/direct representations for all three criteria fail to provide any reliable
estimates since they all lose accuracy for values of ε that are significantly larger than
those required for the best accuracy.
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8 Conclusions

Standard computations involving positive definite kernels, including prediction of
unobserved values of Gaussian random fields and maximum likelihood estimation
of kernel parameters, can become severely ill-conditioned for sufficiently flat ker-
nels, such as Gaussians, with a small shape parameter ε . In earlier work, the Hilbert–
Schmidt SVD was used for stable prediction when the Mercer series of the kernel
is known. In this paper we have demonstrated how a similar approach allows for
stable approximation of the likelihood function, which is used in determining the
maximum likelihood estimator for optimal predictions. In addition, we have devel-
oped two additional parametrization criteria related to the kriging variance (and er-
ror bounds in numerical analysis) which can be stabilized using similar techniques.
Numerical experiments confirm the stability for small ε , which traditional compu-
tations would be unable to achieve.

Future work should carefully investigate the advantages and disadvantages of the
different criteria proposed here—depending on the specific type of application at
hand, and the choice of covariance kernel used for the prediction. Further study on
the relationship between the two terms present in (21) for various observed data y
will help understand when (23) is a suitable approximation for yT K−1y. Also, un-
derstanding how a Mercer series with numerically computed eigenvalues and eigen-
functions affects the quality of these computations will allow application of this
strategy to a wider variety of kernels (which is currently limited by the availability
of the Mercer series).
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