
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 3, No. 3, pp. 659-678

Commun. Comput. Phys.
March 2008

Spectral Methods for Resolving Spike Dynamics in

the Geirer-Meinhardt Model

Michael McCourt1,∗, Nicholas Dovidio2 and Michael Gilbert3

1 Department of Applied Mathematics, Illinois Institute of Technology, Chicago,
IL 60616, USA.
2 Department of Mathematics, Davidson College, North Carolina, USA.
3 Department of Mathematics and Physics, Colorado State University-Pueblo,
Colorado, USA.

Received 23 December 2006; Accepted (in revised version) 5 July 2007

Available online 30 October 2007

Abstract. The Gierer-Meinhardt reaction-diffusion model is analyzed using a spectral
collocation method. This reaction-diffusion system is governed by activator and in-
hibitor concentrations. Initially, the system is considered in one dimension and then
in two dimensions; numerical results are presented for both cases. The algorithmic
complexity and accuracy are compared to those of a moving finite element method.
Finally, observations are made concerning when to use the proposed spectral method
as opposed to the established moving mesh method.
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1 Introduction

In the 1970s, Gierer and Meinhardt [6] proposed a variety of models related to biologi-
cal pattern formation [23]. These models are used to describe the reactions between two
substances, an activator and an inhibitor; other models have also been suggested to study
pattern formation including the Schnakenberg model [25]. In this paper, a spectral col-
location method is proposed to solve one such model, now called the Gierer-Meinhardt
model, that describes the concentrations of the activator and inhibitor as functions of
space and time. In this model, the activator is an autocatalyst, that is, it has the ability
to make more of itself. In contrast, the inhibitor lives off the activator and reduces the
activator’s concentration. By analyzing the concentrations at different times, we can see
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how these two substances interact. Also, by altering parameters that effect the reaction
speed of the two concentrations, a variety of different states can be achieved [6, 22].

The Gierer-Meinhardt (GM) model in dimensionless form is as follows:

At =ǫ2∇2 A−A+
Ap

Hq
, (1.1a)

τHt =κ∇2H−H+ǫ−1 Am

Hs
, x∈Ω, t>0, (1.1b)

∂n A=∂nH =0, x∈∂Ω, t>0, (1.1c)

where A is the activator concentration, H is the inhibitor concentration, ǫ is the activa-
tor diffusivity satisfying 0 < ǫ ≪ 1, κ is the inhibitor diffusivity satisfying κ > 0, τ is the
reaction-time constant, and Ω is a bounded two-dimensional domain. ∂n denotes the
normal derivative with respect to the boundary ∂Ω, and x is the spatial coordinate(s).
The set of exponents (p,q,m,s) satisfies

p>1, q>0, m>0, s≥0,
p−1

q
<

m

s+1
.

The GM model exhibits rich spike dynamics that vary depending on the parame-
ters chosen; these spike solutions have been studied using finite element moving mesh
methods described in [13, 18, 19]. Asymptotic analysis has also been applied to the spike
dynamics problem to provide analytical insight into the reaction-diffusion model [8]. For
the one-dimensional GM model, extensive asymptotic and numerical results have been
presented for the case when τ = 0, and also for τ > 0 [13]. For the two-dimensional GM
model there have been limited asymptotic and numerical results only for the case when
τ=0. Recently, numerical results have been presented for the case when τ>0 [18,19], but
asymptotic results are as yet unavailable.

The main focus of this paper is to provide numerical results for the two-dimensional
GM model for the case when τ > 0 using spectral collocation. The purpose of this is to
provide insight into the spike dynamics of the model, to introduce a computationally
feasible way of solving spike dynamics problems, and to partially validate the results
obtained in [19], since theoretical results are limited for this case. In Section 2, we outline
the implementation of a Chebyshev spectral collocation method to the one-dimensional
problem (2.1a), and present numerical results arising from the method. In Section 3,
we show how to extend the Chebyshev spectral method to two spatial dimensions and
present numerical results for the case τ > 0. These results are compared to the ones in
[18, 19].

2 One-dimensional GM model

In one spatial dimension, the dimensionless GM model can be written as

At =ǫ2 Axx−A+
A2

H
, (2.1a)

τHt =κHxx−H+ǫ−1A2, (2.1b)
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where −1≤ x≤1 and t≥0 subject to the initial conditions

A(x,0)= a0(x),
H(x,0)=h0(x),

(2.2a)

for −1< x<1 and the boundary conditions

Ax(±1,t)=0,
Hx(±1,t)=0,

(2.2b)

for t∈ [0,T]. The exponent set used in (2.1a) is (p,q,m,s)= (2,1,2,0) and that is the only
set which will be considered in this paper.

2.1 Spectral collocation method

Because our problem has non-periodic boundary conditions we will collocate algebraic
polynomials rather than the trigonometric polynomials used for periodic boundary con-
ditions [5]. This will be implemented by Chebyshev differentiation matrices; for more
details, see [14]. For the spatial and temporal discretization, the following notation is
used throughout this section:

Φ(x,tn)=Φn, Φ(xj,tn)=Φn
j .

The size of the Chebyshev matrix is determined by the number of collocation points
used to solve the problem. Algebraic polynomials of high degree tend to exhibit oscilla-
tions; to counteract this we used a clustered grid determined by the Chebyshev-Gauss-
Lobatto points

xj =cos

(

jπ

N

)

, 0≤ j≤N−1, (2.3)

and N is the number of collocation points. The structure of the first order Chebyshev
matrix D∈R

N×N is :

(DN)00 =
2(N−1)2+1

6
, (DN)(N−1)(N−1)=−2(N−1)2+1

6
,

(DN)jj =
−xj

2(1−x2
j )

, j=1,··· ,N−2,

(DN)ij =
ci

cj

(−1)i+j

xi−xj
, i, j=0,··· ,N−1, i 6= j

where

ci =

{

2, i=0 or N−1,
1, otherwise.

By multiplying the Chebyshev matrix D by itself we find the second derivative matrix
D2.
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2.2 One-dimensional GM model with a zero reaction-time constant

We now consider (2.1a) for the case τ = 0, and show how Chebyshev spectral methods
are implemented to evolve a one-spike solution. Setting τ =0 in (2.1a) yields the system

At =ǫ2 Axx−A+
A2

H
, (2.4a)

0=κHxx−H+ǫ−1A2 (2.4b)

with the same initial and boundary conditions described by (2.2b).

By discretizing in space with the set of point defined in (2.3) and applying the Cheby-
shev second derivative matrix D2 to the elliptic partial differential equation (PDE) (2.4b)
we find

0=κD2Hn−Hn+ǫ−1(An)2,

where Hn and An are the vectors with the values of A(x,tn). The jth value in the vector is
the xj point defined in (2.3). By solving for Hn terms, it follows that

(κD2− IN)Hn =−ǫ−1(An)2, (2.5)

where IN is the N×N identity matrix. This linear system can be solved using any number
of techniques; we attempted both direct and iterative methods. Because the solution
changes so little between time steps, the values of Hn−1 provide a good initial guess of
the Hn. This suggests use of an iterative method, as the required number of iterations
will be low and thus overall time required will be less than a direct method. Therefore
our 1D work was completed using Gauss-Seidel iterations, while LU factorization was
used only to verify these results.

For the parabolic PDE (2.4a), a second-order backwards differentiation formula (BDF)
was implemented to advance An through time. Because κ≫ ǫ2 (values given in Section
2.3) the impact of the spatial derivatives is vastly different, and the stiff component of this
problem must be reconciled. ǫ2 is a very small term and Axx is a rapidly changing term, as
can be seen in the figures, which generally indicates the need for careful handling of the
solution. Analytically this multiplication of a small term with a rapidly changing term
suggests singular perturbation analysis; numerically, we will need an implicit technique,
hence the second-order BDF.

When applied to u′(t)= f (t,u(t)) the BDF gives rise to the time discretization scheme

un+2− 4

3
un+1+

1

3
un =

2∆t

3
f n+2. (2.6)

Applying this BDF and the Chebyshev discretization (2.3) to (2.4a) leads to the nonlinear
system

An+2− 4

3
An+1+

1

3
An =

2∆t

3

(

ǫ2(An+2)xx−An+2+
(An+2)2

Hn+2

)

.
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By discretizing in space using the spectral method (the Chebyshev D2 matrix) and rear-
ranging the system becomes

[

ǫ2D2−
(

3

2∆t
+1

)

IN

]

An+2 =
2

∆t
An+1− 1

2∆t
An+

(An+2)2

Hn+2
. (2.7)

As in the solution of (2.5), we can provide our Gauss-Seidel technique with an excel-
lent initial guess – the solution at the previous time step. This allows the iterative method
to converge in less than 10 iterations, and often less than 3 depending on the time step
∆t.

Unlike (2.5), (2.7) is implicit in An+2 and Hn+2 and thus we used a fixed point iteration
to find An+2 by using, as an initial guess An+1. This fixed point iteration was carried out
until the change between iterations is less than 5×10−7. Convergence is guaranteed by
the Banach fixed point theorem for

∥

∥

∥

∥

ǫ2D2−
(

3

2∆t
+1

)

IN

∥

∥

∥

∥

∞

<1.

2.3 One-dimensional dynamics for a zero reaction-time constant

We now consider the evolution of a one-spike solution to the one-dimensional GM model
when τ = 0. For this case, the dynamics of a one-spike solution to (2.1a) for ǫ ≪ 1 was
asymptotically analyzed in [8].

In [8], the method of matched asymptotic expansions was used for ǫ≪1 to derive the
following asymptotic results for a one spike solution to the one-dimensional GM model:

Theorem 2.1. [8]: For 0 < ǫ≪ 1 and τ = 0, the dynamics of a one-spike solution to (2.1a) are
characterized by

A(x,t)∼ ac ≡Hγw
(

ǫ−1[x−x0(t)]
)

, (2.8a)

H(x,t)∼hc ≡HGm[x;x0(t)]/Gm[x0(t);x0(t)], (2.8b)

where γ≡q/(p−1), and the spike location x0(t) satisfies the differential equation

dx0

dt
∼− ǫ2q

(p−1)
√

κ

(

tanh
[

κ−1/2(1+x0)
]

−tanh
[

κ−1/2(1−x0)
])

. (2.8c)

w(y) is the unique, positive solution to

w′′−w+wp =0, −∞<y<∞; (2.8d)

w→0 as |y|→∞; w′(0)=0, w(0)>0. (2.8e)

In (2.8b), Gm(x;x0) is the Green’s function satisfying

κ
d2Gm

dx2
−Gm =−δ(x−x0), −1< x<1;

dGm

dx
(±1;x0)=0, (2.8f)
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and the constant H(t) is defined in terms of Gm by

H≡
[

1

bmGm(x0;x0)

]1/ξ

, bm ≡
∫ ∞

−∞
[w(y)]m dy, (2.8g)

where ξ is defined by

ξ≡ qm

(p−1)
−(s+1). (2.8h)

Numerical experiment 1

To illustrate the Chebyshev spectral collocation method described above for solving (2.1a),
we take ǫ=0.03, κ =1, τ =0. For the remainder of this section we define

x0(t)= max
x∈[−1,1]

{A(x,t)}.

with the initial location of the spike, x0(0) = 0.6. The initial profile for A matches the
initial profile used in [13],

A(x,0)= a0(x)=

(

tanh1

2

)

sech2

(

x−x0(0)

2ǫ

)

.

Because τ=0, Eq. (2.4b) is elliptic, and thus no initial profile for H need be chosen for this
experiment.

Figs. 1-3 show the numerical solutions to (2.1a) based on our Chebyshev spectral
method with N = 128 Chebshev spectral collocation points. In Table 1, we compare the
numerical results using the spectral method with N = 96, and N = 128, with the asymp-
totic results and the numerical results presented in [13] using a moving mesh method.
To provide a basis for comparison, we compare the results with the solution to (2.1a) us-
ing the NAG library code [12] generated in [13], using 2000 equally spaced meshpoints
and strict tolerances on the time-stepping. The results should be very close to the true
solution, and are shown in the last column of Table 1.

The results for the 128-point spectral method are close to the NAG library. This is
indicative that our method of solution is accurate with a number of points comparable
to the moving mesh method. For the purposes of this experiment, the NAG solution is
taken to be the true solution; as we will realize in Section 3 the number of points required
for the NAG solution in two dimensions is unwieldy and alternate methods must be
considered.

This experiment is meant to test the spectral method’s potential, along with the mov-
ing mesh method, as an accurate approximation to the true solution. In [20, 26] there
were studies of the solution for a one-dimensional model which led to the values in the
ASY column above. Analytic solutions in two dimensions are limited to the case where
τ =0 with some results found in [24]. There are however no results to our knowledge of
asymptotic solutions for a two-dimensional system with positive τ. This requires confir-
mation the accuracy of spectral collocation in one-dimension before comparing numeri-
cal solutions in two dimensions.
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Table 1: Comparison of the asymptotic and numerical results for the center x0(t) of the spike A(x,t).

x0(t) x0(t) x0(t) x0(t) x0(t) x0(t)
t (ASY) (MM,200) (MM,100) (PS,128) (PS,96) (NAG)

100 0.55338 0.555 0.55 0.550 0.550 0.5506
400 0.43577 0.425 0.43 0.427 0.426 0.4272
800 0.31891 0.305 0.33 0.306 0.305 0.3064

1200 0.23441 0.215 0.23 0.219 0.219 0.2207
1800 0.14834 0.135 0.15 0.134 0.138 0.1353
3000 0.05975 0.055 0.07 0.050 0.055 0.0512
∗Here MM denotes Moving Mesh, PS denotes Pseudo-Spectral, ASY and NAG are described in [13].

Figure 1: Activator A (solid curve) and inhibitor concentration H (dashed curve) at t=100 and t=400.
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Figure 2: Activator A (solid curve) and inhibitor concentration H (dashed curve) at t=800 and t=1200.

2.4 Oscillatory dynamics with a positive reaction-time constant

In this section, we briefly discuss the oscillatory dynamics of the one-dimensional GM
model for the case when τ >0. Because the H equation in (2.1a) is parabolic rather than
elliptic as it is in (2.4b) we now require an initial condition for H(x,0)=h0(x). The initial
profile we used was

H(x,0)=h0(x)=
cosh(1−|x|)

3cosh(1)
,

a form of solution to the perturbation problem (2.8b). In [13], the stability of single spike
quasi-equilibrium profiles with respect to a nonzero reaction-time constant was studied.
A nonlocal eigenvalue problem that determines the stability of the profile for (2.1a) was
formulated, and from numerical computations of this eigenvalue problem, critical values
of τ were determined for which oscillatory instabilities are triggered.
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Figure 3: Activator A (solid curve) and inhibitor concentration H (dashed curve) at t=1800 and t=3000.

We briefly state these general results from [13], and then conduct a second numerical
experiment using the Chebyshev spectral method for the spatial discretization in order
to illustrate the efficacy of this method for the case when τ >0.

Theorem 2.2. [13]: Assume that 0 < ǫ≪ 1, τ ≥ 0, and x0 ∈ (−1,1). Then, the stability of the
quasi-equilibrium profile (2.8a) for the GM model (2.1a) is determined by the spectrum of the
nonlocal eigenvalue problem

L0Φ−χmwp

(
∫ ∞

−∞
wm−1Φdy

∫ ∞

−∞
wm dy

)

=λΦ, −∞<y<∞, (2.9a)

Φ→0, as |y|→∞. (2.9b)

In (2.9a), the local operator L0 and the multiplier χm are defined by

L0Φ≡Φ′′−Φ+pwp−1Φ, (2.9c)
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Figure 4: Plots of Am (spike height) versus t for (2.1a) with τ =1.25 (solid curve), τ =1.35 (dashed curve).

and

χm =χm(z;x0)≡qm

[

s+
√

1+z

(

β(θλ;x0)

β(θ0;x0)

)]−1

. (2.9d)

Here the function β(ξ,x0) is defined by

β(ξ,x0)≡ tanh[ξ(1+x0)]+tanh[ξ(1−x0)], (2.9e)

z≡τλ, θλ ≡ θ0

√
1+z, θ0≡κ−1/2. (2.9f)

Numerical computations were carried out in [13] in order to determine the critical
bifurcation value for τ, called τ0, for which oscillatory instabilities are observed. It was
found that for (2.1a) with the initial spike location x0(0) = 0, τ0 is a monotonically de-
creasing function of κ. In particular, it ranges from the value τ0 ≈ 2.749 when κ ≪ 1, to
τ≈0.771 when κ≫1. Here we consider the bifurcation which occurs for κ =1.

Numerical experiment 2

We now present a numerical solution to (2.1a) for the case τ > 0. In Fig. 4 we plot the
amplitude of the spike, called Am(t)≡ A(0,t), as a function of t for three different values
of τ when κ =1 and ǫ=0.01. In particular, we plot Am(t) for τ =1.25 and τ =1.35. These
results lead us to believe that the point of bifurcation τb is between 1.25<τb <1.35, as was
described in [13].

It is worth noting that the rapidly oscillating results depicted here require the implicit
time stepping technique described by (2.6). The slow drift to equilibrium observed in
the first numerical experiment are not as demanding as these dynamics. Indeed, certain
parameter values may allow us to forgo the fully implicit methods in favor of something
more efficient. We will however need to be careful for future experiments that we do not
assume more efficient time stepping discretization can be taken when the dynamics are
oscillatory.
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3 Two-dimensional GM model

In this section, we describe the implementation of the Chebyshev spectral collocation
method for the two-dimensional GM model (1), and present numerical results for the
case when τ >0. We then compare the results to those of [19], the only two-dimensional
results known to us for the case when τ >0.

The numerical techniques for applying the spectral method are similar to those found
in one dimension. Once again the technique is separated into two factors: spatial dis-
cretization and time stepping. Using the same exponent set as before (p,q,m,s)=(2,1,2,0),
(1.1a) becomes

At =ǫ2∇2A−A+
A2

H
, (3.1a)

τHt =κ∇2H−H+ǫ−1A2, (3.1b)

∂n A=∂nH =0, x∈∂Ω, (3.1c)

for t>0. In this paper, we only consider results obtained on the unit square Ω={(x,y)∈
[−1,1]2}. For this domain, the boundary conditions become

Ax(±1,y,t)= Ay(x,±1,t)=0, (3.2a)

Hx(±1,y,t)= Hy(x,±1,t)=0. (3.2b)

3.1 2D spectral collocation method

3.1.1 Spatial discretization

Since the boundary is a rectangle, the solutions A and H at each time step can be easily
organized into a vector. We use an equal number of collocation points N in both x and
y, although the methods described henceforth can be generalized to Nx points in the x
dimension and Ny points in the y dimension if desired.

If the unknowns are ordered by rows, the Laplacian operator (∇2u=uxx+uyy in Carte-
sian coordinates) takes the form

∇2≡ IN⊗D2+D2⊗ IN, (3.3)

where ⊗ is the Kronecker tensor product, IN is the N×N identity matrix, and D2 is the
previously defined second order Chebyshev differentiation matrix. As we can see from
the ordering of the unknowns, the IN⊗D2 term corresponds to the second derivative
with respect to x and the D2⊗ IN corresponds to the second derivative with respect to y,
see, e.g., [9].

3.1.2 Time discretization

Before we can continue to build our linear system we must tackle the same difficulties
faced when considering time discretization in one dimension. There is a similar balance
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between accuracy (implicit methods) and efficiency (explicit methods) and to optimize
this algorithm we need to explore several avenues.

To maintain stability without the complexity of solving a fully nonlinear problem, we
have chosen to implement the backward Euler method and retard the nonlinear terms;
this will be termed a linearly implicit method. This places moderate restrictions on the
stability region (and on the values of κ, τ and ǫ as described at the end of Section 2.4),
but requires only one linear solve per iteration. Since our systems are now of size N2

instead of N this is important because each linear solve is now of greater complexity.
While it was computationally practical to perform a simple fixed point iteration in one
dimension, doing so in two dimensions will require too much time.

For this section, we define the vector An = A(x,y,t+n∆t). By applying the linearly
implicit method to (3.1b) the problem becomes

An+1−An

∆t
=ǫ2∇2 An+1−An+1+

(An)2

Hn
,

τ

∆t
(Hn+1−Hn)=κ∇2Hn+1−Hn+1+

(An+1)2

ǫ
.

By discretizing in space using the spectral method this is

[(

1+
1

∆t

)

IN2−ǫ2(IN⊗D2+D2⊗ IN)

]

An+1 =
1

∆t
An+

(An)2

Hn
, (3.4a)

[(

1+
τ

∆t

)

IN2−κ(IN⊗D2+D2⊗ IN)
]

Hn+1 =
τ

∆t
Hn+

(An+1)2

ǫ
. (3.4b)

The vector division in (3.4a) is term by term, which is to say the ith term is computed by
squaring the ith term of An and dividing it by the ith term of Hn.

3.1.3 Boundary conditions

We have not yet incorporated the boundary conditions: this will be done in a similar
fashion as is done for 1D, but it is more complicated in 2D.

Let us begin by considering the question of which rows should be replaced. The ith

element in the vector is on the boundary if:

Table 2:

Condition Boundary

i≡0 mod N x=−1
i≡N−1 mod N x=1
⌊i/N⌋=0 y=−1
⌊i/N⌋= N−1 y=1

If there are N collocation points in each dimension then there are N−2 collocation
equations arising from interior points. The matrices which represent the left-hand side of
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Figure 5: Matrix sparsity plot showing non-zeros, and which entries correspond to boundary values.

(3.4a) and (3.4b) have size N2×N2 though, which requires exactly N2−(N−2)2 =4N−4
equations from the boundary points for a unique solution.

If we examine the number of rows which satisfy the conditions above, we see that
there are in fact 4N−4 rows described; however, corner points {(x,y)|(|x|,|y|) = (1,1)}
have two boundary conditions imposed upon them simultaneously. We were unable
to find a graceful way to implement both boundary conditions simultaneously, so we
have chosen to consider only one boundary condition at each corner. The choices were
arbitrary, with the normal x derivative imposed at (1,1) and (−1,−1) and the normal y
derivative at (−1,1) and (1,−1).

Now that we know the rows which correspond to boundary values we are able to
consider changing our matrix to compensate. To preserve spectral accuracy, a spectral
equation must be formed, and this can be done using the Kronecker tensor product sim-
ilarly to the Laplacian definition (3.3).

The x boundary conditions can be extracted from the matrix IN⊗D and the y bound-
ary conditions can be extracted from the matrix D⊗ IN . Replacing the boundary rows
indicated in Table 2 by the same rows from either IN⊗D or D⊗ IN determined again
from Table 2 we can complete this system. This transfer of rows can be seen in Fig. 5.

We will define the following notation for the matrices from (3.4a) and (3.4b) after
substitution of the appropriate boundary conditions

[(

1+
1

∆t

)

IN2−ǫ2(IN⊗D2+D2⊗ IN)

]

+B.C.−→ A,

[(

1+
τ

∆t

)

IN2−κ(IN⊗D2+D2⊗ IN)
]

+B.C.−→ H.

For the right-hand side vectors, applying the homogeneous boundary conditions consists
of replacing the rows indicated by Table 2 with 0. The new notation is

1

∆t
An+

(An)2

Hn

+B.C.−→ bn
A,

τ

∆t
Hn+

(An+1)2

ǫ

+B.C.−→ bn
H.
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3.2 Implementation

The system we plan to solve can be described as the coupled system

AAn+1 =bn
A,

HHn+1 =bn
H.

From this we can develop an algorithm to compute the discrete values on t∈ [0,T]

3.2.1 The algorithm

Specify parameters: N, ǫ, τ, κ, ∆t, T
Compute first and second derivative matrices, D and D2, of size N
Construct A and H matrices:

{IN⊗D2} Place the D2 blocks on the diagonal of A
{D2⊗ IN} Place the D2 values on the bands of A
Copy A to H
Multiply −ǫ2A and −κH
Diagonal Add 1+τ/∆t to the H diagonal, 1+1/∆t to A diagonal

x BC Replace x rows indicated by Table 1 with IN⊗D
y BC Replace y rows indicated by Table 1 with D⊗ IN

Set initial conditions of A0 = A(x,y,0) and H0 = H(x,y,0)
Step through time by ∆t until T

Calculate bn
A from An and Hn

Solve the system An+1 =A−1bn
A

Calculate bn
H from An+1 and Hn

Solve the system Hn+1 =H−1bn
H

3.2.2 Linear equation solvers

At this point, everything has been discussed except the most computationally expensive
part of this process - the solution of the two linear systems per time step.

In Section 2.4, our one-dimensional systems are solved by Gauss-Seidel iterations and
direct methods. When the value of ∆t used is small, the previous time step is an excellent
initial guess and the Gauss-Seidel method converges in five or fewer iterations. For large
values of ∆t, which are acceptable because we implement the fully implicit 2nd-order BDF,
the initial guess is not as accurate and it becomes faster to use Gaussian elimination.

Thus we are faced with the ultimate decision: direct or iterative methods. The choice
is determined by the size of the system which needs to be solved and the size of the time
step. The time step logic was just explained, but the importance of the size of the system
is not quite as obvious - it deals with the density of the matrix, and simply stated, as the
matrix becomes less dense it tends to be more profitable to use iterative methods. See [7]
or [15].
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y

Initial Profile - A(x,y,0)

x

Figure 6: Initial profile for activator concentration.

If the size of the matrix is N2, then for the 2D spectral method the fill, or ratio of
nonzero entries per number of total entries, is:

Fill =
(2N−1)(N−2)2 +N(4N−4)

(N2)2
.

There are 2N−1 nonzeros per row on the interior of the domain, and N nonzeros per
boundary row. When simplified, this reads:

Fill =
2

N
− 5

N2
+

9

N3
− 4

N4
. (3.5)

For the choice of 50 points in each dimension, we see that the matrix is ≃3.9% dense.
For this specific problem, there is little to be gained in changing between direct and iter-
ative methods; for less dense matrices we will use iterative methods and for more dense
matrices we will use direct methods. As it turns out we will need more than 50 points
to assure accuracy and therefore we will only use iterative methods, specifically GMRES
with ILU(0) preconditioner. See [15] for details, and [17] for details on the implementa-
tion.

3.3 Numerical experiments

In every experiment in this section, the initial conditions implemented are

A(x,y,0)=
1

2

(

1+.001
20

∑
k=1

cos
kyπ

2

)

sech2

(

√

x2+y2

2ǫ

)

,

H(x,y,0)=
cosh(1−

√

x2+y2)

3cosh(1)
,

with ǫ=.04. See Fig. 6 for the A initial profile. We will restrict ourselves with the activator
dynamics in the paper. The experiments were carried out in C++.
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Figure 7: Spike splitting with τ = .1, κ = .0128, ǫ= .04 at t=20,80 and 170.
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Figure 8: Same as Fig. 7, except at t=270,320 and 340.
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Figure 9: Same as Fig. 7, except at t=370,420 and 440.
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Figure 10: Same as Fig. 7, except at t=460,500 and 900.

3.3.1 Spike splitting

In [19], Qiao theorized that given a fixed τ value, there is a κ value which will result in
the two-dimensional domain filling with spikes. For τ =0.1 it has been determined that
values of κ =O(ǫ) will result in spike splitting.

One such instance can be seen for κ =0.0128, where a spike of height ∼ .6 localized at
the origin deforms into a ring which expands to fill the domain. The ring then collapses
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Figure 11: Spike splitting with τ = .1, κ = .0152, ǫ= .04 at t=30,80 and 90.
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Figure 12: Same as Fig. 11, except at t=140,160 and 220.
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Figure 13: Same as Fig. 11, except at t=290,520 and 570.
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Figure 14: Same as Fig. 11, except at t=620,750 and 990.

into several smaller spikes and by t=600 the entire region is filled with spikes with height
∼.1. When κ=0.0152 the initial spike splits into two around t=100. By t=600, each spike
has split at least twice more and the entire region is again filled with spikes, although in
a different pattern than before.

The results were calculated using a reasonable time step, ∆t= .1, and it was unneces-
sary to use a fully implicit time discretization for accurate results. When we compare the
Figs. 7-14 with results for the same experiment in [19], we see that the spectral method
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has provided the same results as Qiao’s moving mesh method. This also confirms that
values of κ=O(ǫ) and τ=0.1 results in an initial spike located at the origin splitting and
spikes filling the domain, as predicted by Qiao.

4 Conclusions

4.1 Complexity

Our current technique of using preconditioned GMRES means that each time step re-
quires between O(N2) and O(N4) operations depending on how effectively we perform
matrix-vector multiplication. Unfortunately, because each row has at least N nonzeros,
it is impossible to achieve efficiency less than O(N3). Our algorithm uses methods de-
veloped in PETSc to take advantage of the sparse structure of the matrix for GMRES and
matrix-vector multiplication.

In terms of storage, the sparse representations of the matrices A and H will require
2 vectors of length N2 (N×N matrices) to hold D and D2. It is never actually necessary
to construct the matrices A and H because the structure is known and the values in each
of the matrices are comprised of only values from D, D2 and the input parameters. Also,
4 vectors of length N2 are needed to store bA and bH at the current time step and the
previous time step.

It is that storage which motivated the use of the first order implicit-explicit BDF for
time stepping and not the second order method as was used in one dimension. The
second order method requires storing the solution at two previous time steps rather than
just one, which in turn necessitates 6N2 memory spaces instead of 4N2. While this is not
problematic for small N, as we increase N we reach the memory limits of the machine and
therefore it is more practical to use the first-order method rather than the second-order
one.

4.2 Future work

From our work we are able to confirm the numerical results presented in [18,19] and use
similar grid sizes to resolve the dynamics: 3025 for our method vs. 3066 for the moving
mesh method. Because these two techniques approach the problem from very different
perspectives, it is difficult to compare them. Fundamentally, both methods require nearly
equal time to evolve the oscillating or steady state solutions because while the spectral
method requires a smaller time step, there is a remesh requirement at each time step for
the moving mesh method.

All the numerical experiments were completed on a single machine with a dual 1.7
GHz Pentium 4 Xeon processor and 2 GB RDRAM. Since we are already using PETSc for
data storage and access, it is logical to attempt to move this project into parallel with the
built in MPI routines. By doing so we would be able to handle more collocation points
without increasing the time required to compute the solution. While we have considered
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the system with N = 99,149,199,249 to guarantee the accuracy of the results for N = 55,
these values are increasingly less practical for a single node. 55 points were chosen to be
comparable in size to the problem size from [19].

Another improvement which can be made to this algorithm is to implement the fully
implicit second-order BDF as we had in one dimension. Doing this will require solving a
coupled system of nonlinear equations of size 2N2, probably with a Newton-like method.
Such routines are provided in PETSc with the use of SNES (Structure-neutral Nonlinear
Equation Solvers) objects. Hopefully this technique will allow greater freedom with the
size of time step, and guaranteed accuracy for oscillating solutions in two dimensions.
Qiao showed that such dynamics occurred for κ = 10, τ≈ .77. These dynamics were not
discussed above because accuracy cannot yet be guaranteed with the spectral method.

While the numerical results described in this paper have confirmed various one-
dimensional analytic results, there is no comparison to be made to asymptotic results
in two dimensions. This paper does not attempt to make conclusions about the asymp-
totic nature of these problems, as was done in [13] for the 1D case. Rather we have simply
tried to confirm the solutions presented in [19] and extend asymptotic results from 1D to
2D. There is still a great deal of work to be done analytically - hopefully this paper will
provide insight for future studies.

Acknowledgments

This research and all three authors were fully funded by the NSF Grant DMS-0453600.
Special thanks are due to the Hong Kong Baptist University for their generous accom-
modations, specifically Dr. Tao Tang for his time and support. Also we would like to
thank Dr. Graeme Fairweather for his guidance throughout this project, and Dr. Greg
Fasshauer for his suggestions and contributions.

References

[1] U. M. Ascher, S. J. Ruuth and B. Wetton, Implicit-explicit methods for time-dependent partial
differential equations, Appl. Numer. Math., 25(2-3) (1997), 151-167.

[2] R. Beauwens and L. Quenon, Existence criteria for partial matrix factorizations in iterative
methods, SIAM J. Numer. Anal., 13 (1976), 615-643.

[3] S. Chandrasekaran, M. Gu and T. Pals, Fast and stable algoritms for hierachically semi-
separable representations, Technical Report UCSB Math, 2004.
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