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Abstract
Designing an effective materials fabrication pro-
cess demands searching the realm of possible fab-
rication processes to understand how desired prop-
erties are impacted by the specifications of the
process. We apply active learning in the context
of Bayesian optimization to propose an adaptive
experimental design – our goal is to identify pro-
cesses with the most desirable properties in a sam-
ple efficient fashion. In reflecting on our cross-
disciplinary industry-academic collaboration be-
tween materials scientists and mathematicians,
we discuss our approach to managing practical
concerns and complications; these issues may be
rarely addressed in theoretical literature but were
necessary for our circumstances.

1. Introduction
In this work, we focus on fabricating high transmittance
substrates which also have self-cleaning properties. We
measure self-cleaning capacity through superomniphobicity,
the ability to repel many liquids; superomniphobic surfaces
demonstrate a static contact angle greater than 150◦ and
low contact angle hysteresis for a variety of liquids (Pan
et al., 2013; Choi et al., 2009; Tuteja et al., 2007; Kota
et al., 2012). Other desirable properties include resistance
to fogging (Mouterde et al., 2017; Wilke et al., 2018) and
high durability against abrasion (Si et al., 2018).

Inspired by recent analysis of glasswing butterfly wings (Sid-
dique et al., 2015), this research focuses on creating a new
self-healing, durable, superomniphobic glass with random
nanostructures as opposed to highly ordered sub-wavelength
structure arrays. The glass is fabricated through a simple,
scalable, two-step, maskless reactive ion etching and fluori-
nation process, detailed in Section 2, which we demonstrate
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on 4 inch diameter glass wafers. This fabrication process
contains a large number of decisions (e.g., regarding the
fluorination process) which impact the resulting glass in
often complicated and nonintuitive ways.

Traditionally, making these fabrication decisions involves
using application specific expertise to explore the impact
of a small number of decision parameters on a single prop-
erty of fabricated glass. Because our goal in this project
is to balance multiple interacting properties (to achieve su-
peromniphobia without sacrificing ultrahigh transparency
and ultralow haze), we turn to active learning, specifically
Bayesian optimization (Frazier, 2018). This has the poten-
tial to adaptively search the space of fabrication strategies
in a sample-efficient fashion.

Standard Bayesian optimization, though, is ill-suited for
the circumstances of this materials science project; prac-
tical limitations demand adaptations, which we detail in
this paper. We hope that this can serve to document some
of the compromises which helped power this application
of active learning in a real-world materials fabrication set-
ting involving real-world concerns (shared lab equipment,
tooling precision).

2. Fabrication Process
The nanofabrication process is performed in two steps:
(a) reactive ion etching (RIE) and (b) plasma enhanced
chemical vapor deposition (PECVD) and surface treatment
with fluorination. This fabrication process scalably creates
the nanostructures directly into the fused silica glass with-
out the need for patterning or an external mask (Haghanifar
et al., 2017; 2018). Figure 1 depicts the input and output
parameters under analysis, and suggests how we will effi-
ciently explore the fabrication parameters of this process.

The first fabrication step focuses on RIE to create sub-
wavelength nanostructures in the fused silica in order to
maximize the total transparency and minimize the haze at
the wavelength of 550 nm. The second processing step
focuses on creating re-entrant structures and a low energy
surface: in this processing step, we consider the deposition
of silicon dioxide (SiO2) by PECVD on top of the sub-
wavelength nanostructures in order to make the structure
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Figure 1. Schematic of experimental fabrication and Bayesian learning optimization process for nanostructured glass. The objectives,
defined in Section 2 are transmission, haze and oil contact angle. The auxiliary properties, which did not drive the optimization but were
monitored to determine if stronger constraints were possible, were reflection, fogging proclivity, and durability.

re-entrant followed by fluorination.

Numerous decisions made within these two steps impact the
properties of the resulting glass; before an efficient search
of the space of fabrication parameters could take place, we
needed to agree on the appropriate parameters to search, and
an appropriate domain for those parameters. Figure 1 lists
the parameters which we choose to vary during our search –
other parameters, such as the fluorination time, were fixed.

Because we simultaneously want high performance photon
management and wetting properties, we phrase our goal in
terms of a multiobjective optimization problem with solu-
tion x∗,

x∗ satisfies


x∗ = arg maxx∈Ω θo(x),

x∗ = arg maxx∈Ω Ttotal(x), and
x∗ = arg minx∈Ω H(x)

(1)

where Ω is the space of all possible choices of the process
parameters. We denote x to be both the fabrication process
parameters and the resulting nanostructure from using those
parameters. θo(x) is the oil contact angle, Ttotal is the total
transmission, and H is the haze. The total transmission and
haze are optimized for wavelength λ = 550 nm, which is in
the middle of the visible spectrum, and ethylene glycol was
chosen as the oil. The wavelength-dependent haze H(λ) is
defined as

H(λ) =

[
Tscattered(λ)

Ttotal(λ)

]
× 100%, (2)

where Ttotal(λ) is the total transmission and Ttotal(λ) =
Tscattered(λ) + Tspecular(λ), where Tscattered is the scattered
transmission and Tspecular is the specular or direct transmis-
sion (Gao et al., 2018).

In general, there is no unique structure x? that is simultane-
ously optimal in all the objectives in (1). In lieu of such a
point, the solution to such a multiobjective problem is often
defined as the Pareto-optimal set, or Pareto-efficient frontier
P ∈ Ω. Pareto optimal parameters x ∈ P evince a “trade-
off” between objective function values, such that no x′ ∈ Ω
can yield better performance across all objective functions;
any improvements in one metric would necessitate a loss in
performance in at least one other metric. All of the points
in P may be referred to as efficient, and all other points in
Ω would be defined as dominated. A more thorough expla-
nation of the topic can be found in multicriteria literature
(Ehrgott, 2005).

3. Bayesian Optimization
The substrate fabrication process described above is quite
time-consuming, which necessitates an effective experimen-
tal design so as to quickly search the space Ω for input
parameters which perform well for all three objective func-
tions. Bayesian optimization is a sample-efficient iterative
search framework, where the relationship between process
parameters and objective function values is unknown, and
function evaluations (executing the fabrication and char-
acterizing the resulting substrate) are expensive or time
consuming. Standard Bayesian optimization consists of
two components: a probabilistic surrogate model, to model
the objective function f , and an acquisition function, to
determine which x parameters to next sample.

In a typical single objective Bayesian optimization setting,
the objective function f is assumed to be a realization of a
Gaussian process (GP) with mean function µ and a positive
definite covariance kernel K, i.e., f ∼ GP(µ,K) (Ras-
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mussen & Williams, 2005; Fasshauer & McCourt, 2015).
The mean and covariance functions are often defined to have
certain free parameters which are fit to the data using strate-
gies such as maximum likelihood estimation (which was our
strategy of choice in this process). In all of our modeling,
we assume our GPs to have µ ≡ 0 and a square-exponential
K with independent length-scales in each dimension. A
Tikhonov regularization parameter is fixed to be 10−3, pri-
marily to ease ill-conditioning concerns.

An acquisition function is a utility function that measures
the value of sampling at different points within Ω, condition-
ing on the observed data. Acquisition functions balance the
tradeoff between exploitation, suggesting input parameters
near where we have observed the best results so far, and ex-
ploration, suggesting input parameters in regions where we
have not tried out. After n different input parameters have
been tested, the nth surrogate model can be created. We
define the acquisition function using the surrogate model,
which is then maximized to determine the next input param-
eter selection at which to run the fabrication process.

4. Practical Considerations for our Setting
As indicated above, the actual circumstances of Section 2
are rather different than the classical Bayesian optimization
framework defined in Section 3. Of course, for this project
to be successful, it was necessary that we adapt the standard
approaches from active learning to be able to function ef-
fectively in this real-world setting. We list some of these
driving motivations below.

• There was a limited fabrication budget (only 60 total
fabrications in a 9 dimensional space) caused by the
sharing of equipment between several people at the lab.

• The fabrications had to be executed in batches of 5
(5 different x parameter values) to accommodate the
structure of the fluorination chamber.

• We wanted to be able to reject proposed fabrication
as failures without executing them, so as to not waste
lab time on something that we, as application experts,
believe to be inappropriate.

• Our equipment (as with all equipment) has limited
precision, i.e., parameter values which are too close
may be indistinguishable.

As described in (1), the problem we consider here is actu-
ally much more costly than a single objective optimization
problem—putting a high number of points on the Pareto
frontier P is a costly proposition. After discussing the
limitation of only having 60 available fabrications, we real-
ized that, despite Bayesian optimization’s sample-efficient

nature, trying to fully flesh out the Pareto frontier was infea-
sible.

Instead, we identified an alternate strategy for finding a
small number of points on P which represented the most
interesting fabricated products. Our new glass must perform
better in all metrics than standard glass; consequently, we
imposed performance thresholds θo(x) ≥ 60◦, Ttotal(x) ≥
88.5 and H(x) ≤ 1.1. To respect these thresholds we adapt
the ε-constraint method (Hwang & Masud, 1979) to produce
the scalar optimization problem:

max
x∈Ω

Ttotal(x), s.t. H(x) ≤ Ĥ, θo(x) ≥ θ̂o, (3)

with the analogous constrained scalar optimization problems
also defined for θo and H . Our goal became to find as many
points as possible on P which satisfy these constraints.

To execute this, we adapt methods from constrained
Bayesian optimization literature (Gelbart, 2015; Letham
et al., 2019). After k fabrications have been conducted,
Gaussian process models sT,k, sH,k and sθ,k are created
for the transmission, haze and contact angles, respectively.
These are modeled independently, though in future work we
could consider a joint model. Independent modeling was
preferable here because it allowed us to incorporate data
from previous experiments (prior to this work) where not
all of the haze, transmission and contact angle values were
recorded.

Using these models, an acquisition function is defined for
each component of (1); the Bayesian optimization process,
as powered by this acquisition function, is presented graphi-
cally in a simplified setting in (2). This acquisition function
is modified from the expected parallel improvement (Gins-
bourger et al., 2008) to account for the desire for viability.
Considering, at first, only the solution to (3), imposing the
viability requires us to consider not only the distribution of
t ∼ sT,k(x) (a Gaussian distribution), but the joint distri-
bution t, h, z ∼ sT,k(x), sH,k(x), sθ,k(x), more succinctly
denoted by t, h, z ∼ sk(x). The acquisition function (with-
out parallel suggestions) would be defined as

aT,k(x) = Et,h,z∼sk(x)[(t− t̃k)+Ih<Ĥ∩z>θ̂o ], (4)

where t̃k is the highest Ttotal value observed thus far, (ξ)+

denotes max(ξ, 0), and Iν = 1 if the condition ν is satisfied
and 0 otherwise (the indicator function). This is semanti-
cally equivalent to maximizing the expected improvement
attainable for viable points; points which do not satisfy our
thresholds contribute zero improvement.

To account for the desire for 5 parallel suggested parame-
ters, we expand on the base structure of (4). This requires
taking draws of our models at 5 different input parameter
x1, . . . ,x5 ∈ Ω values. We denote this with the shorthand
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Figure 2. Sample depiction of our proposed Bayesian optimization
process; each column represents one of the three output parameters
under consideration. These are artificial profiles in one dimension
for explanatory purposes only.
First row: The “true” output parameter to be optimized.
Second row: Statistical models built from the observed data.
Third row: The probability of an input parameter being viable
(satisfying the constraints for the other two output parameters) and
the associated acquisition function values along with the points
which maximize the acquisition function.
Fourth row: The new observations achieved by sampling at the
“next test parameters” and the new models which result from this
new data.

notation

t,h, z ∼ sk(~x)⇐⇒
t1, h1, z1, . . . t5, h5, z5, ∼ sk(x1), . . . , sk(x5),

which allows us to write the expected parallel improvement,
attenuated by viability, as

aT,k,5(~x) = Et,h,z∼sk(x)

[
max

1≤i≤5
(ti − t̃k)+Ihi<Ĥ∩zi>θ̂o

]
.

(5)

Failed observations (reported prior to conducting the fab-
rication) were stored as the worst value observed for each
metric—this allows us to avoid parameters near that region
without maintaining separate models of the probability of
viability. We hope to consider, in future work, developing

separate or joint models of probability using these “prior
beliefs”. Figure 2 depicts the Bayesian optimization process
in a sample problem reduced to one dimension for ease of
understanding.

In practice, we estimate (5) through 4000 Monte Carlo itera-
tions. We used the CMA-ES (Hansen et al., 2003) optimiza-
tion strategy to maximize all acquisition functions. Because
of the limited precision afforded from the lab equipment,
the domain Ω over which the optimization takes place is

• CHF3 flow rate: {0, 5, . . . , 80} sccm,
• Ar flow rate: {0, 5, . . . , 100} sccm,
• O2 flow rate: {0, 5, . . . , 100} sccm,
• CF4 flow rate: {0, 5, . . . , 80} sccm,
• SF6 flow rate: {0, 5, . . . , 80} sccm,
• Etching time: {0, 60, . . . , 5400} seconds,
• Power: {20, 30, . . . , 300} watts,
• Pressure: {50, 100, . . . , 250} mtorr,
• SiO2 deposition time: {8, 10, . . . 500} seconds.

The CMA-ES algorithm is modified to only propose points
on this discrete space. The evolutionary population is 25,
with 100 full iterations and 10 uniform random restarts.

5. Results
During 64 fabrications (4 of which were immediately re-
ported as failures and thus did not count against the original
budget) driven by Bayesian optimization (which, itself, was
seeded with 79 fabrications executed prior to the start of this
project) we produced 5 points on P . They are presented in
Table 1 and depicted in Figure 3.

Table 1. The Pareto efficient points found during the fabrication
search. The point in bold is the point for which the fabrication
displayed in Figure 4 was conducted.

Transmission (%) Haze (%) Oil Contact Angle (◦)

97.01 0.01 155
95.90 0.03 157
95.65 0.02 156
94.54 1.30 158
94.36 0.60 158

We conducted scanning electron microscopy (SEM) images
of the sub-wavelength, re-entrant structures. The random-
ness in the height and spacing provide for broadband and
omnidirectional antireflection, like the glasswing butterfly
wings (Siddique et al., 2015). By depositing the SiO2, the
surface area at the top of the pillars increase which provide
the re-entrant structures required for omniphobicity. One
such microscope image is presented in Figure 1 with the
label “Nanostructured glass”.



Better Solar Panel Glass Through Bayesian Optimization

92 94 96
Transmission (%)

0

1

2

3
Ha

ze
 (%

)

efficient results
dominated results

92 94 96
Transmission (%)

120

140

160

Oi
l C

on
ta

ct
 A

ng
le

 (°
)

efficient results
dominated results

0 1 2 3
Haze (%)

120

140

160

Oi
l C

on
ta

ct
 A

ng
le

 (°
)

efficient results
dominated results

Transmission

Haze Oil Contact Angle

Figure 3. Depictions of the experimental design driven by our Bayesian optimization methodology. left: Three 2D feasible region plots of
the three objectives under consideration. right: Radar plot of the 5 viable efficient outcomes identified during the parameter search (plot
qualitatively exaggerated to account for the different scales of the three objectives). These points are listed explicitly in Table 1.
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Figure 4. We placed 5 µL of various liquids on both standard glass
and our newly fabricated glass (ethylene glycol was the oil for
which we defined superomniphobicity). top: Standard glass. bot-
tom: Glass fabricated using the parameters associated with the
results in bold in Table 1, also in blue in Figure 3.

To investigate the omniphobic property, we deposited 5 µl
drops of different liquids with different surface tensions,
from water (72.8 mN/m) to ethylene glycol (47.7 mN/m),
on both bare (Figure 4(a)) and nanostructured (Figure 4(b))
substrates. The bare fused silica has 42.9± 1.1◦ and 18.7±
0.7◦ contact angle for water and oil. By creating re-entrant
structure on the bare fused silica, the water and oil contact
angles increase significantly to 162.1 ± 2.0◦ and 155.2 ±

2.2◦, respectively. This improvement over the bare glass is
substantial, and comes with improvements in transmission
and haze as well.

The total transmission of double-side nanostructured glass
at 550 nm is 99.5%. In both single-side and double-side
nanostructured glass, the haze value reduces to less than
0.1% across a broadband range of wavelength. After analyz-
ing specular reflection, the reflection values are always less
than glass even for a high incidence angle of 70◦, which
reveals the high omnidirectional, antireflective performance
of our fabricated glass.

6. Conclusions
We feel that, by joining forces on this research, we were
able to produce this new fabrication strategy much more ef-
ficiently than previous research would have suggested. Con-
siderable changes were required from a standard Bayesian
optimization strategy, but this work will help power future
materials science developments. By attending this work-
shop, we hope to share our experiences and also learn from
others on how active learning (and other statistical learning
topics) are adapted to practical circumstances with unavoid-
able limitations.

In future work, we hope to adapt this active learning ap-
proach to exploring other properties of this fabricated glass
which may require a more flexible feedback cycle than what
is suggested in Figure 1. In particular, we envision wanting
to modify the search process based on user’s preferences
as solicited through questions asked before providing next
points (a process briefly outlined in (Dewancker et al., 2017),
but requiring more development).
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